首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molybdenum fractions and mobilization kinetics in acid forest soils
Authors:Friederike Lang  Martin Kaupenjohann
Abstract:We extracted molybdenum (Mo) from eight acid forest soils (19 A, E, and B horizons) in NE-Bavaria and from one site in the Ore Mountains, using (1) anion exchange-resin, (2) 0.2 M ammonium oxalate, and (3) ascorbic acid/ammonium oxalate. The Mo concentrations in the anion exchange-resin fraction varied between 5 and 28 μg kg-1. Oxalate-extractable Mo ranged from 44 to 407 μg kg-1 and after reduction of iron (Fe) with ascorbic acid, 135 to 1071 μg Mo kg-1 were extracted. The lowest concentrations of Mo were measured in acid and sesquioxide impoverished E horizons. The total concentrations of Mo in spruce needles correlated with ion exchange resin extractable Mo, indicating that this fraction represents Mo readily available to plants. The Mo and Fe dissolution kinetics during oxalate extraction were studied on 8 of the soil samples to obtain further information on Mo mobilization. Oxalate extractable iron (Feo) was mobilized within a few hours. A first order equation was applicable to the Fe dissolution kinetics with the rate constants ranging between 0.9 and 9.0 h-1. The mobilization of Mo occurred in two distinct stages. An initially rapid dissolution was followed by a further increase in extractable Mo but with slower kinetics. A combined first order-diffusion equation was found to be appropriate for modelling the results. The first order rate constants for Mo mobilization ranged from 0.6 to 11.4 h-1. However, correlations between the rates of reaction of Mo and Fe could not be established, indicating that Mo is either not distributed equally along Fe minerals or that there is another pool, possibly the organic substance of the soil, from which Mo is extractable by oxalate.
Keywords:molybdenum  availability  resin extraction  spruce stand  diffusion controlled mobilization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号