首页 | 本学科首页   官方微博 | 高级检索  
     


Mid-term tracing of 15N derived from urine and dung in soil microbial biomass
Authors:Christine Wachendorf  Rainer Georg Joergensen
Affiliation:(1) Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany;(2) Institute of Soil Science, University of Hamburg, 20146 Hamburg, Germany
Abstract:Large amounts of C and N are returned to pasture soils by grazing animals in the form of urine and dung. Therefore, a field trial was carried out to investigate the mid-term effects of 15N-labeled excrements, produced by feeding a cow with 15N-labeled grass silage, on the soil microbial biomass. Simulating the deposition of excrements, 15N-labeled urine and dung were applied to a 0.09-m2 area of a sandy pasture soil in October 2000 and 2001. Applied amounts of N were 1,030 and 1,052 kg ha−1, respectively. Soil was sampled at 0–15 cm depth, three times over 7 months and analyzed for total C and N, and microbial biomass C and N. Recovery of urine and dung N in microbial biomass was determined by 15N analysis of K2SO4 extracts of pre-extracted fumigated and unfumigated soils. Under dung patches, microbial biomass C was 16% and 45% higher, and microbial biomass N was 24% and 57% higher than under the untreated soil in 2001 and 2002, respectively. Under urine patches, microbial biomass C was increased after 12 weeks and decreased after 27 weeks. Microbial biomass assimilated 7% to 17% and 10% to 21% of the 15N applied initially as urine and dung, respectively. These percentages were considerably higher than those for artificially with spiked 15N urea-created and labeled manures reported in previous experiments. An important reason may be that the naturally 15N-labeled N components behave differently in soil than urea spikes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号