首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lepidium latifolium: plant nutrient competition-soil interactions
Authors:Robert R Blank  Robert G Qualls  James A Young
Institution:USDA-ARS, Exotic and Invasive Weed Research Unit, 920 Valley Road, Reno, NV 89512, USA,
Department of Environmental and Resource Sciences, University of Nevada, Reno, NV 89512, USA,
Abstract:Exotic weeds are invading rangelands of the western United States at unprecedented rates. Understanding plant-soil relationships and competitive interactions of invasive weeds is crucial in long-term control strategies. In a greenhouse experiment, we investigated the influence of soil nutrient depletion on plant growth and plant competition between the exotic invasive weeds, Lepidium latifolium (invading wetlands) and Bromus tectorum (invading a multitude of habitats). Plants were grown individually and in combination until L. latifolium flowered, then roots and aboveground mass were harvested. Soil in individual pots was homogenized, subsamples collected for nutrient analyses, and the soil was re-planted to the same species, grown, and harvested twice more for a total of three growth cycles. As nutrient supplying capacity of the soil declined through growth cycles, aboveground mass of L. latifolium decreased significantly (PА.05) and growth potential of B. tectorum surpassed that of L. latifolium. Only bicarbonate-extractable soil ortho-P positively correlated with plant mass of L. latifolium. A separate experiment demonstrated that L. latifolium has a narrow window of soil water potentials for optimal growth; greatest growth at -20 kPa with significantly declining growth at saturation and -400 kPa. Our data suggest that L. latifolium primarily invades wetlands because the high soil water content reduces tortuosity and allows efficient transport of nutrients to this sparsely rooted species. When soil moisture and/or the nutrient supplying capacity of the soil declines, plants with greater root density can out-compete L. latifolium. Monocultural stands of L. latifolium may be self-limiting in time as available nutrients, particularly P, are biocycled to drier upper soil layers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号