首页 | 本学科首页   官方微博 | 高级检索  
     


Forest canopy transformation of atmospheric deposition
Authors:Michael Bredemeier
Affiliation:1. Research Centre Forest Ecosystems and Forest Decline, University of G?ttingen, D-3400, G?ttingen, West Germany
Abstract:Solute fluxes to the ground in open plots and under the forest canopy of different species were investigated in a number of long-term ecosystem studies in West Germany. From the canopy flux balance, rates of interception deposition and canopy/deposition interactions were assessed. Chemically, both open precipitation and throughfall are dilute solutions of H2SO4 and HNO3 and their salts. For the sites investigated, mean pH in bulk precipitation ranged from 4.1 to 4.6, and in throughfall from 3.4 to 4.7. The increase in acidity after canopy passage at most sites indicates considerable interception deposition of strong acids to the forest stands, exceeding the rate of H+ buffering in the canopy. Evidence for buffering processes can be directly deduced from the fact that on sites with high soil alkalinity and high foliage base status, throughfall pH is usually higher than precipitation pH. Furthermore, the same idea can be concluded from changes in solution composition after canopy passage: the H+/SO inf4 sup2? ratio is decreasing at most sites, while alkali earth cations from exchange processes occur in throughfall (Ca2+/SO inf4 sup2? ratio increases). Solution composition and element flux data are presented for each of the sites, and the regional, orographical and site specific (species composition, ecosystem state) differentiations are discussed. A method for the assessment of total deposition and of canopy interactions such as H+-buffering and cation leaching is described, and results of calculations are shown. From these calculations it is concluded that forest ecosystems in Germany receive mean H+ loads of ca. 1 to 4 keq H+ · ha?1 · a?1 from atmospheric deposition. Acidity deposition rates seem to be related to a few key factors such as regional characteristics and ecosystem characteristics.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号