首页 | 本学科首页   官方微博 | 高级检索  
     


Biogeochemistry of two Appalachian deciduous forest sites in relation to episodic stream acidification
Authors:David R. Dewalle  William E. Sharpe  Pamela J. Edwards
Affiliation:1. School of Forest Resources and Environmental Resources Research Institute, The Pennsylvania State University, 16802, University Park, PA, U.S.A.
2. Research Forester, Northeastern Forest Experiment Station, Timber and Watershed Laboratory, 26287, Parsons, WV, U.S.A.
Abstract:Bulk precipitation, throughfall, and soil water chemistry were studied from November 1983 to November 1984 at two ridge-top Appalachian deciduous forest sites to isolate causes of differing episodic stream acidification. The Fork Mountain site in West Virginia, which exhibited little episodic stream acidification, had lower deposition of H+ and SO inf4 sup2? and greater reductions of H+ in the water circulating through the forest canopy, forest floor, and mineral soil than the Peavine Hill site in Pennsylvania. Greater neutralization at Fork Mountain was linked to higher Ca and Mg carbonate contents in the sandstone and shale soil parent materials. Fork Mountain had greater amounts of exchangeable bases in the organic and mineral soil horizons. Neither site appeared to be accumulating SO inf4 sup2? in the soil, with Peavine Hill losing 56% more than was received in bulk deposition. Anions in soil leachate at Fork Mountain were largely balanced by Ca2+ and Mg2+, while at the Peavine Hill site A1" was the dominant cation. Results suggest that the typically-low carbonate content of sandstone and shale soil parent materials commonly found in Appalachian forests may be a key parameter controlling soil and stream acidification. Data for the one-year period also suggest bulk deposition of H+ was 63% greater at Peavine Hill than Fork Mountain.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号