首页 | 本学科首页   官方微博 | 高级检索  
     

农村区域发展—水环境质量响应模型
引用本文:赵杰,丰景春,张可. 农村区域发展—水环境质量响应模型[J]. 中国农村水利水电, 2014, 0(6): 61-65
作者姓名:赵杰  丰景春  张可
作者单位:1.河海大学商学院2.河海大学项目管理研究所
基金项目:中国与周边国家水资源合作开发机制研究;基于地理信息系统的农村水环境管理研究;基于GIS的农村水环境协同管理理论与关键技术研究
摘    要:农村区域发展对水环境质量有重要的影响。结合研究区域的特点,总结影响该区域发展的因素,利用格兰杰因果检验法分析区域发展因素与水环境质量之间的非线性关系,并筛选出经济、社会、人口等影响水环境质量的关键性因素(超前指标),在此基础上引入BP神经网络模型,分析区域发展与水环境质量之间的映射关系,建立广西农村区域发展与水环境质量响应模型,为广西水环境治理与保护决策提供依据。研究表明:广西农村区域发展的经济社会因素中,农林牧渔总产值、农村人口、化肥使用量是影响水环境的关键性因素。利用BP神经网络,以关键性因素为输入,可以较好的预测水环境的质量,预测精度较高,预测速度快,预测误差较小。

收稿时间:2013-10-12
修稿时间:2013-11-11

Rural Regional Development and Water Environment Quality Response Model
Abstract:Rural area development has important influence on water environment quality. According to the characteristics of the study area, summarizes the factors affecting the development of the region, using granger causality test analyse the nonlinear relationship between water environment quality and regional development and screen out key factors such as economy, society, and population (indicators in advance).On this basis,introduces BP neural network model to analyse the mapping relationship between regional development and water environment quality, establish Guangxi rural regional development and water environment quality response model, provide basis for decision-making for the management and protection of water environment in Guangxi. Research shows that: agriculture, forestry and fishing output, rural population, fertiliser use are the key factors influencing the water environment in the economic and social factors for the development of rural areas in Guangxi.Use BP neural network can predict the water environment quality with higher prediction accuracy and prediction speed, less prediction errors.
Keywords:
点击此处可从《中国农村水利水电》浏览原始摘要信息
点击此处可从《中国农村水利水电》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号