首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Shallow subsurface drainage in an irrigated vertisol with a perched water table
Authors:WA Muirhead  E Humphreys  NS Jayawardane  JL Moll
Institution:

CSIRO Division of Water Resources, Griffith Laboratory, PMB No 3, Griffith, NSW 2680, Australia

Abstract:Waterlogging and salinity are reducing the productivity of irrigated agriculture on clay soils in south east Australia. We compared five drainage treatments: (1) undrained control (Control); (2) mole drains (Mole); (3) mole drains formed beneath gypsum-enriched slots (GES) (Mole + GES); (4) shallow pipe drains installed beneath GES (Shallow Pipe); (5) deep pipe drains (Deep Pipe). The experiment was set out on a vertisol and our measurements were made during the growth of an irrigated onion crop.

Over the 3 months before the spring irrigations commenced, the perched water table on the Control was less than 400 mm below the soil surface for 27% of the time, whereas the shallow drainage treatments (Treatments 2, 3 and 4) reduced this time to less than 4%. During the irrigation season, the perched water table on the Mole + GES treatment rose above 400 mm for 3% of the time. The perched water table on the Mole treatment was above 400 mm for 14% of the time, compared with 19% of the time on the Control. The Deep Pipes were less effective in reducing the depth to the perched water table, both before and during the irrigation period.

Mole drains increased the gas-filled porosity above the drains. However, the gas-filled porosity remained below reported levels for optimum root growth. Although the drains effectively drained excess water, and lowered the water table, the hydraulic gradient was insufficient to remove all of water from the macropores. Gypsum enriched slots above the mole drains increased the gas-filled porosity in the slots but the drainable porosity in the undisturbed soil appeared to be inadequate for optimum root growth, even though some drainage occurred near the slots.

Discharge from the shallow drainage treatments averaged 58 mm for each irrigation, and was considerably more than the amount required to drain the macropores. The mole channels were in reasonably good condition at the end of the irrigation season, with at least 70% of the cross-sectional area of the channel open.

Shallow subsurface drains increased onion yield by about 38%. For each day the water table was above 400 mm, the yield declined by 0.23 tonnes per hectare. Farmer adoption of shallow subsurface drainage will depend on the long-term economic benefits (influenced by the longevity of the mole channels and yields response) and the need to develop more sustainable management practices.

Keywords:Waterlogging  Subsurface drainage  Water table  Gas-filled porosity  Irrigation  Vertisol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号