首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice
Authors:Stanley Sarah A  Gagner Jennifer E  Damanpour Shadi  Yoshida Mitsukuni  Dordick Jonathan S  Friedman Jeffrey M
Institution:Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA.
Abstract:Medical applications of nanotechnology typically focus on drug delivery and biosensors. Here, we combine nanotechnology and bioengineering to demonstrate that nanoparticles can be used to remotely regulate protein production in vivo. We decorated a modified temperature-sensitive channel, TRPV1, with antibody-coated iron oxide nanoparticles that are heated in a low-frequency magnetic field. When local temperature rises, TRPV1 gates calcium to stimulate synthesis and release of bioengineered insulin driven by a Ca(2+)-sensitive promoter. Studying tumor xenografts expressing the bioengineered insulin gene, we show that exposure to radio waves stimulates insulin release from the tumors and lowers blood glucose in mice. We further show that cells can be engineered to synthesize genetically encoded ferritin nanoparticles and inducibly release insulin. These approaches provide a platform for using nanotechnology to activate cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号