Affiliation: | 1. Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;2. Central Diagnostics Laboratory, University Medical Center Utrecht, Utrecht, The Netherlands Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands;3. Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;4. Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands |
Abstract: | Cushing's syndrome (CS) is a serious endocrine disorder that is relatively common in dogs, but rare in humans. In ~15%–20% of cases, CS is caused by a cortisol-secreting adrenocortical tumour (csACT). To identify differentially expressed genes that can improve prognostic predictions after surgery and represent novel treatment targets, we performed RNA sequencing on csACTs (n = 48) and normal adrenal cortices (NACs; n = 10) of dogs. A gene was declared differentially expressed when the adjusted p-value was <.05 and the log2 fold change was >2 or < −2. Between NACs and csACTs, 98 genes were differentially expressed. Based on the principal component analysis (PCA) the csACTs were separated in two groups, of which Group 1 had significantly better survival after adrenalectomy (p = .002) than Group 2. Between csACT Group G1 and Group 2, 77 genes were differentially expressed. One of these, cytochrome P450 26B1 (CYP26B1), was significantly associated with survival in both our canine csACTs and in a publicly available data set of 33 human cortisol-secreting adrenocortical carcinomas. In the validation cohort, CYP26B1 was also expressed significantly higher (p = .012) in canine csACTs compared with NACs. In future studies it would be interesting to determine whether CYP26B1 inhibitors could inhibit csACT growth in both dogs and humans. |