首页 | 本学科首页   官方微博 | 高级检索  
     


Efficiency in sugar beet cultivation related to field history
Affiliation:1. Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka;2. Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka;3. Rice Research and Development Institute, Bathalagoda, Ibbagamuwa, Sri Lanka;4. Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia;5. Grenfell Campus-Memorial University of Newfoundland, NL, Canada;6. Natural Resources Management Centre, Department of Agriculture, Peradeniya, Sri Lanka;7. Climate Change Institute, Australian National University, Canberra, Australia;1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China;2. Institute of Geographical Sciences, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050011, China;3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China;4. Natural Resources Institute Finland (Luke), FI-00790, Helsinki, Finland;1. Departamento de Producción Vegetal, Facultad de Agronomía, Estación Experimental Mario Alberto Cassinoni, Universidad de la República, Ruta 3, km 363, Paysandú 60000, Uruguay;2. Department of Plant Science, The Pennsylvania State University, 116 ASI Building, University Park, PA 16802, USA;3. Departamento de Biometría, Estadística y Computación, Facultad de Agronomía, Estación Experimental Mario Alberto Cassinoni, Universidad de la República, Ruta 3, km 363, Paysandú 60000, Uruguay;4. Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de la República, Av. Garzón 780, 11200 Montevideo, Uruguay;1. International Rice Research Institute—Bangladesh Office, House 9, Road 2/2, Banani, Dhaka 1213, Bangladesh;2. International Rice Research Institute—India Office, 1st Floor, CG Block, NASC Complex, DPS Marg, Pusa, New Delhi 110012, India;3. Bangladesh Rice Research Institute, Gazipur 1701, Bangladesh;4. Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh;1. Department of Agroecology, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830 Tjele, Denmark;2. SEGES, Agro Food Park 15, 8200 Århus N, Denmark;3. International Centre for Research in Organic Food Systems (ICROFS), P.O. Box 50, 8830 Tjele, Denmark;4. Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Centro Alameda del Obispo, Córdoba, Spain;1. Departamento de Producción Vegetal, Facultad de Agronomía, Estación Experimental Mario Alberto Cassinoni, Universidad de la República, Ruta 3, km 363, Paysandú 60000, Uruguay;2. Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de la República, Av. Garzón 780, 11200 Montevideo, Uruguay;3. Departamento de Biometría, Estadística y Computación, Facultad de Agronomía, Estación Experimental Mario Alberto Cassinoni, Universidad de la República, Ruta 3, km 363, Paysandú 60000, Uruguay;4. Department of Plant Science, The Pennsylvania State University, 116 ASI Building, University Park, PA 16802, USA
Abstract:The concept of sustainable intensification in crop production has become more and more important over the last years. Calls for an efficient production demand an increase in yield without extending the agricultural area or increasing the amount of agricultural inputs. Thus, our study aimed to identify which variables influence the efficiency in crop cultivation in Central Europe and how we can explain the variances between fields. The data base for the present study was a survey among sugar beet farmers in all parts of Germany in the years 2010–2014. In order to structure the fields, variables representing environment, management and farm characteristics were extracted. The performed analysis according to components (principal component analysis) did not result in a nationwide structure of the data. Thus, fields were grouped according to similar preconditions such as regions and crop rotations. Sugar yield ranged from 12.5 t ha−1 in 2010 to 15.4 t ha−1 in 2014 on nationwide average. The median value for N fertilization over all fields and years was 137.4 kg ha−1, the median treatment index (TI) reached 3.7, the median field evaluation index (Ackerzahl) was 70 and the median field size 8 ha. We found that over 50% of the variance among the data was explained by environment, management and farm characteristics. The comparison of fields on a regional basis was more sensible than on a nationwide basis as the variance of farms and fields was too broad for a useful clustering. It was concluded that the adaption of the farmer’s management to regional specific conditions is an opportunity to reduce yield gaps and to increase efficiency in terms of a sustainable intensification in sugar beet production.
Keywords:Crop rotations  Practice data  Agricultural management  Farm characteristics  Principal component analysis
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号