Escherichia coli dihydrodipicolinate synthase and dihydrodipicolinate reductase: kinetic and inhibition studies of two putative herbicide targets |
| |
Authors: | Carolyn V Coulter,Juliet A Gerrard,James A E Kraunsoe,Andrew J Pratt |
| |
Abstract: | Dihydrodipicolinate synthase (DHDPS) (EC 4.2.1.52) and dihydrodipicolinate reductase (DHDPR) (EC 1.3.1.26) have attracted much recent attention as potential herbicide targets. DHDPS was feedback-inhibited by (S)-lysine; inhibition was reversible and uncompetitive with respect to both (S)-ASA and pyruvate. Homoserine lactone was a reversible non-competitive inhibitor of DHDPS with respect to both (S)-ASA and pyruvate. (R)-Cysteine sulfinic acid and (S)-glutamic acid were reversible uncompetitive inhibitors of DHDPS with respect to (S)-ASA. (S)-Aspartic acid was a reversible mixed-type inhibitor. Dipicolinic acid was a reversible competitive inhibitor of DHDPR with respect to the substrate (4S)-4-hydroxy-2,3,4,5-tetrahydro-(2S)-dipicolinic acid, as was isophthalic acid. Δ3-Tetrahydroisophthalic acid was a moderate inhibitor of both DHDPS and DHDPR. These compounds represent possible leads in the development of novel herbicides. © 1999 Society of Chemical Industry |
| |
Keywords: | dihydrodipicolinate synthase dihydrodipicolinate reductase lysine biosynthesis homoserine lactone |
|
|