首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Selection for imidacloprid resistance in Nilaparvata lugens: cross-resistance patterns and possible mechanisms
Authors:Zewen Liu  Zhaojun Han  Yinchang Wang  Lingchun Zhang  Hongwei Zhang  Chengjun Liu
Institution:Key Laboratory of Monitoring and Management of Plant Disease and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
Abstract:A field population of brown planthoppers (Nilaparvata lugens St?l) was collected and selected for imidacloprid resistance in the laboratory. The resistance increased by 11.35 times in 25 generations and the resistance ratio reached 72.83 compared with a laboratory susceptible strain. The selected resistant strain showed obvious cross-resistance to all the acetylcholine receptor targeting insecticides tested (monosultap 1.44-fold, acetamiprid 1.61-fold, imidacloprid homologues JS599 2.46-fold and JS598 3.17-fold), but not to others. Further study demonstrated that TPP and DEM had no synergism on imidacloprid. However, PBO displayed significant synergism in some different strains, and the synergism increased with resistance (S strain 1.20, field population 1.43 and R strain 2.93). PBO synergism to cross-resistant insecticides was also found in the resistant strain (monosultap 1.25, acetamiprid 1.39, JS598 1.94 and JS599 2.02). We concluded that esterase and glutathione S-transferase play little role in imidacloprid detoxification. The increase of the P450-monooxygenases detoxification is an important mechanism for imidacloprid resistance and target resistance may also exist in this species.
Keywords:Nilaparvata lugens  resistance mechanism  cross‐resistance  synergism  P450‐monooxygenases  acetylcholine receptors
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号