首页 | 本学科首页   官方微博 | 高级检索  
     


Inverse velocity dependence of vibrationally promoted electron emission from a metal surface
Authors:Nahler N H  White J D  Larue J  Auerbach D J  Wodtke A M
Affiliation:Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106-9510, USA.
Abstract:All previous experimental and theoretical studies of molecular interactions at metal surfaces show that electronically nonadiabatic influences increase with molecular velocity. We report the observation of a nonadiabatic electronic effect that follows the opposite trend: The probability of electron emission from a low-work function surface--Au(111) capped by half a monolayer of Cs--increases as the velocity of the incident NO molecule decreases during collisions with highly vibrationally excited NO(X(2)pi((1/2)), V = 18; V is the vibrational quantum number of NO), reaching 0.1 at the lowest velocity studied. We show that these results are consistent with a vibrational autodetachment mechanism, whereby electron emission is possible only beyond a certain critical distance from the surface. This outcome implies that important energy-dissipation pathways involving nonadiabatic electronic excitations and, furthermore, not captured by present theoretical methods may influence reaction rates at surfaces.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号