首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Source–sink relations and kernel weight differences in maize temperate hybrids
Institution:1. Agronomy Department, Purdue University, West Lafayette, IN 47907, USA;2. AgMaize Modeling Project, The Climate Corporation, Research Triangle Park, Raleigh-Durham, NC 27709, USA;1. IICAR - CONICET, Concejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino S/N, S2125ZAA, Zavalla, Prov. de Santa Fe, Argentina;2. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro (UNRN), Mitre 630, CP8400, San Carlos de Bariloche, Río Negro, Argentina;3. AACREA, Asociación Argentina de Consorcios Regionales de Experimentación Agrícola, C1041AAZ, Ciudad Autónoma de Buenos Aires, Argentina;1. The Key Laboratory of Oasis Eco–Agriculture, Xinjiang Production and Construction Group, College of Agronomy, Shihezi University, Shihezi 832000, Xinjiang, China;2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China;3. Research Institute of Agricultural Sciences, Division 6 of Xinjiang Production and Construction Group, Wujiaqu 831300, Xinjiang, China;1. Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT-NOBA-CONICET), Argentina;2. Estación Experimental INTA Pergamino, Argentina;3. Escuela de Ciencias Agrarias, Naturales y Ambientales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (ECANA-UNNOBA), Argentina;4. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) en INTA, Centro Regional Buenos Aires Norte, Estación Experimental INTA Pergamino, Argentina;5. Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Argentina;1. Cátedra de Cerealicultura, Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina;2. Department of Agronomy, Kansas State University, Throckmorton PSC, 1712 Claflin Road, 66506, Manhattan, Kansas, United States;3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma de Buenos Aires, Argentina;4. Instituto de Fisiología y Ecología Vinculado a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas (IFEVA-CONICET), Av. San Martín 4453, C1417DSE, Ciudad de Buenos Aires, Argentina
Abstract:Maize (Zea mays L.) kernel weight (KW) response to changes in assimilate availability per kernel during grain filling suggests that plants establish an early kernel sink potential that place them to grow close to a saturating assimilate availability condition during late grain-filling, meaning source limitations are common only early in kernel development. As maize reproductive efficiency in kernel set is not constant across different plant growth rates (PGR) around flowering, we used PGR per kernel during this period as an indicator of source availability per kernel. We tested whether PGR per kernel during flowering or during the effective grain-filling period were correlated to genotypic and environmental differences in final KW. Plant growth rate during both periods, KW, kernel growth rate during the effective grain-filling period, total duration of grain filling and kernel number per plant were measured in 12 commercial genotypes differing in KW sown at two sites under full irrigation. As expected from the curvilinear response relating kernel number per plant and PGR around flowering, increased PGRs resulted in higher PGR per kernel around this period (r2 = 0.86; p < 0.001). Differences in final KW due to genotypes or environments were significantly explained by the PGR per kernel around flowering (r2 = 0.40; p < 0.001), and not by the PGR per kernel during the effective grain-filling period. Genotypes differed in kernel growth rate (p < 0.001) and grain-filling duration (p < 0.001). The former was well explained by PGR per kernel around flowering (r2 = 0.66; p < 0.001), but showed no relationship with the PGR per kernel during the effective grain-filling period. Grain-filling duration was partially explained (r2 = 0.27; p < 0.01) by the ratio between PGR per kernel during the effective grain-filling period and kernel growth rate, but differences in duration were negligible compared to those observed in the ratio (~41% versus ~130%, respectively). Together, these results support the importance of source availability per kernel during early grain filling on the determination of maize potential sink capacity and final KW. Early resource availability per kernel was accurately estimated as PGR per kernel around the period of kernel number determination, which helped explain genotypic and environmental differences in maize final KW as well as in kernel growth rate.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号