首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的马尾松人工林胸径-树高模型预测
引用本文:卯光宪,谭伟,柴宗政,赵杨,杨深钧. 基于BP神经网络的马尾松人工林胸径-树高模型预测[J]. 浙江农林大学学报, 2020, 37(4): 752-760. DOI: 10.11833/j.issn.2095-0756.20190486
作者姓名:卯光宪  谭伟  柴宗政  赵杨  杨深钧
作者单位:1.贵州大学 林学院,贵州 贵阳 5500252.贵州大学 林业信息工程研究中心,贵州 贵阳 550025
基金项目:贵州省林业厅资助项目(黔林资复〔2012〕331号);贵州省科技支撑计划项目(黔科合支撑〔2017〕2520-1号);贵州省科技计划项目(黔科合基础〔2019〕1076号);“十三五”国家重点研发计划项目(2017YFD0601201)
摘    要:  目的  马尾松Pinus massoniana是中国南方主要用材树种,建立高效的马尾松人工林胸径-树高预测模型,可为马尾松人工林经营提供理论指导。  方法  以贵州省黔中地区马尾松人工林为研究对象,基于82块样地(25 m×25 m)的4 284株马尾松单木数据,选取6个常用的广义非线性模型进行拟合,从中筛选出拟合效果最好的模型。使用相同的数据确定最佳隐层节点数量后,经过反复训练建立基于BP神经网络的马尾松胸径-树高预测模型。  结果  在6个广义非线性模型中,拟合效果最佳为Korf模型(R2=0.650);马尾松适宜的隐藏层节点数为2,适宜的模型结构(输入层节点数∶隐藏层节点数∶输出层节点数)为1∶2∶1,模型预测精度达0.717。  结论  广义非线性模型能较好地拟合马尾松人工林胸径-树高关系,但与BP神经网络模型相比,BP神经网络不需要依赖经验模型,也不用模型筛选,而且BP神经网络模型具有较高的决定系数和较低的均方根误差,拟合精度优于广义非线性模型。图5表5参35

关 键 词:森林经理学   胸径   树高   马尾松   BP神经网络
收稿时间:2019-08-21

Diameter-height model for Pinus massoniana plantations based on BP neural network
MAO Guangxian,TAN Wei,CHAI Zongzheng,ZHAO Yang,YANG Shenjun. Diameter-height model for Pinus massoniana plantations based on BP neural network[J]. Journal of Zhejiang A&F University, 2020, 37(4): 752-760. DOI: 10.11833/j.issn.2095-0756.20190486
Authors:MAO Guangxian  TAN Wei  CHAI Zongzheng  ZHAO Yang  YANG Shenjun
Affiliation:1.College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China2.Research Center of Forestry Information Engineering, Guizhou University, Guiyang 550025, Guizhou, China
Abstract:  Objective  To provide theoretical guidance for the management of the plantation of Pinus massoniana, a wood widely used in the south, this study is aimed at the establishment of a high-efficiency diameter-height Model.  Method  With 4 284 P. massoniana plants from 82 sample plots in central Guizhou Province as the study subjects, 6 generalized nonlinear models were selected to fit the diameter-height relationship. After the determination of the optimal number of hidden layer nodes, repeated training was conducted to establish the BP neural network-based model of diameter-height relationship for P. massoniana plantation.  Result  Among the 6 generalized nonlinear models, the model that fits the best is Korf function (R2=0.650) while the two hidden layers for BP neural network model were suitable for P. massoniana plantation with 1∶2∶1 as the appropriate model structure (number of input layer nodes∶number of hidden layer nodes∶number of output layer nodes) was and the model prediction accuracy reaching 0.717.  Conclusion  The generalized nonlinear model can fit the diameter-height relationship of P. massoniana plantation pretty well, yet in comparison, the BP neural network works better in that it’s not reliant on empirical models and has better fitting accuracy for the high R2 yet lower root mean squared error. [Ch, 5 fig. 5 tab. 35 ref.]
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《浙江农林大学学报》浏览原始摘要信息
点击此处可从《浙江农林大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号