首页 | 本学科首页   官方微博 | 高级检索  
     


Potentially hazardous element accumulation in rice tissues and their availability in soil systems after biochar amendments
Authors:Jing  Feng  Yang  Zhijiang  Chen  Xiaomin  Liu  Wei  Guo  Bilin  Lin  Gaozhe  Huang  Ronghui  Liu  Wenxin
Affiliation:1.College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People’s Republic of China
;
Abstract:Purpose

Biochar has shown to be a great product to control the bioavailability of potentially hazardous elements (PHE) in contaminated soils. Despite the advantages associated with the application of biochar in agricultural soils, relatively few studies have focused on the effects of biochar amendments on soil chemical properties, accumulation of arsenic, cadmium, zinc, and lead in rice tissues, and their availability in soil systems.

Materials and methods

The field experiment was conducted at the paddy soils in Hunan Province, China. The soil texture was sandy clay loam. Wheat-derived biochar was applied once to the experimental plots at the rates of 0, 10, 20, 30 and 40 t ha?1, and referenced as A0, A10, A20, A30, and A40, respectively. For PHE determination, soil samples and plant samples were digested with a mixed solution of HCl:HNO3 (4:1, V:V) and HCl:HClO4 (4:1, V:V), respectively, and the arsenic, cadmium, zinc, and lead in the digest solution were measured by ICP-MS (Thermo Fisher Scientific, USA). The soil available fraction of PHE (arsenic, cadmium, zinc, and lead) was extracted by diethylenetriamine pentaacetic acid (DTPA) and measured by inductively ICP-MS.

Results and discussion

Biochar amendment increased chemical properties of soil organic matter, pH, electrical conductivity, cation exchange capacity, nitrate nitrogen, and available phosphorus. Soil DTPA extractable arsenic, cadmium, zinc, and lead concentrations were significantly reduced. Arsenic, cadmium, zinc, and lead in rice shoots, and arsenic, cadmium, and zinc in roots significantly decreased after amendment. Concentrations in rice tissues positively and negatively correlated with the soil available fraction of PHE and soil chemical properties, respectively. Soil electrical conductivity negatively correlated with the soil available fraction of PHE. Concentrations of arsenic, zinc, cadmium, and lead in rice roots declined relative to increases of cation exchange capacity (arsenic, zinc), available phosphorus (cadmium), and nitric nitrogen (lead) content. Similar relationships were observed between cation exchange capacity and PHE in shoots.

Conclusions

Biochar creates avoidance of PHE through regulating chemical properties through biochar sorption capacity. Cation exchange capacity, available phosphorus, and nitric nitrogen were the principle factors affecting roots uptake of arsenic, zinc, cadmium, and lead. Biochar soluble salts could decline availability of metals/metalloids in soils through precipitation. Wheat-derived biochar application is an alternative safe product to immobilize PHE in rice paddy soils by restricting the risk of PHE.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号