首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的冬小麦耗水预测
引用本文:陈 博,欧阳竹. 基于BP神经网络的冬小麦耗水预测[J]. 农业工程学报, 2010, 26(4): 81-86. DOI: 10.3969/j.issn.1002-6819.2010.04.013
作者姓名:陈 博  欧阳竹
作者单位:1. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京,100101;中国科学院研究生院,北京,100049
2. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京,100101
基金项目:中国科学院知识创新工程重大项目(KSCX1-YW-09-06)
摘    要:该文根据中国科学院禹城农业试验站2003-2006年冬小麦季的气象资料和大型称重式蒸渗仪观测资料,把实测作物系数作为作物因子指标,建立了以日最高温度、日净辐射、实测表层60 cm土壤含水率、日序数和作物系数为输入因子,蒸渗仪实测蒸散量为输出因子的BP神经网络预测模型,神经网络拓扑结构为5-9-1,训练函数为Trainbr。检验结果表明冬小麦耗水量模型预测平均相对误差为13.1%,预测值和实测值的均方根误差为0.88 mm,模型预测Nash-Sutcliffe效率指数为0.865,预测效果较好,可满足生产需要。

关 键 词:作物,蒸散发量,反向传播,神经网络,作物系数,预测
收稿时间:2009-06-09
修稿时间:2010-03-01

Prediction of winter wheat evapotranspiration based on BP neural networks
Chen Bo,Ouyang Zhu. Prediction of winter wheat evapotranspiration based on BP neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 81-86. DOI: 10.3969/j.issn.1002-6819.2010.04.013
Authors:Chen Bo  Ouyang Zhu
Affiliation:1.Key Laboratory of Ecosystem Network Observation and Modeling/a>;Institute of Geographic Sciences and Natural Resources Research/a>;Chinese Academy of Sciences/a>;Beijing 100101/a>;China/a>;2.Graduate University of Chinese Academy of Sciences/a>;Beijing 100049/a>;China
Abstract:By adopting meteorological data and the data from 2003 to 2006 collected from large weighing lysimeter with the crop of winter wheat at Yucheng Comprehensive Experimental Station, Chinese Academy of Sciences, a predicted model for winter wheat evapotranspiration was developed. Based on BP neural network, the model performance was tested with inputs of daily maximum temperature, net radiation, soil water content of top 60 cm layer, date number and measured crop coefficient and output of observed evaportranspiration. The topology of the neural network was 5-9-1 and the training function was Trainbr. The results showed that the model was good in simulating water consumption of winter wheat with average relative error of 13.1%, standard error of 0.88 mm, and Nash-Sutcliffe efficiency coefficient of 0.865. And the model can meet the requiements of production.
Keywords:crops   evapotranspiration   backpropagation   neural networks   crop coefficient   prediction
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号