首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of arbuscular mycorrhizal fungi on the drought tolerance of Cyclobalanopsis glauca seedlings under greenhouse conditions
Authors:Zhongfeng Zhang  Jinchi Zhang  Yuqing Huang
Affiliation:1. College of Forest Resources and Environment, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, Jiangsu, China
2. Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and the Chinese Academy of Sciences, Guilin, 541006, Guangxi, China
Abstract:Cyclobalanopsis glauca is an important afforestation tree species that is widely used for revegetating the karst region of southwest China. Vegetation in this region is regularly commonly subjected to drought stress because of the geology and water shortages. Here, we investigated the influence of two arbuscular mycorrhizal fungi (AMF) Glomus mosseae and Glomus intraradices on the drought tolerance of C. glauca seedlings under greenhouse conditions. AMF-treated and non-AMF-treated C. glauca seedlings were maintained under two different water regimes (well watered: 80 % field capacity; drought stress: 40 % field capacity) for 90 days. The AMF colonization rate was higher under well-watered conditions compared to drought stress conditions. The growth and physiological performance of C. glauca seedlings were significantly affected by drought stress. Under drought stress conditions, mycorrhizal seedlings had greater height, base diameter, leaf area, and biomass compared to non-mycorrhizal seedlings. In addition, under drought conditions, AMF-inoculated seedlings had greater superoxide dismutase and peroxidase activity, higher soluble sugar content, and lower proline content compared to non-inoculated seedlings. Furthermore, AMF colonization increased the phosphorus and potassium content of seedling shoots under both well-watered and drought stress conditions. Therefore, AMF colonization enhanced the drought tolerance of C. glauca seedlings by improving growth performance, nutrient content, the quantity of osmotic adjustment compounds, and antioxidant enzyme activity. The results indicate that AMF are of potential use for the restoration of vegetation in the karst region of southwest China.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号