首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The genetic mechanisms of warfarin resistance in Rattus rattus found in the wild in Japan
Authors:Kazuyuki D TanakaYusuke K Kawai  Yoshinori IkenakaTsunehito Harunari  Tsutomu TanikawaShima Ando  Hee won MinFumie Okajima  Shoichi FujitaMayumi Ishizuka
Institution:a Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
b Technical Research Laboratory, Ikari Corporation, Chiba 260-0844, Japan
Abstract:Warfarin is commonly used worldwide as a rodenticide. It inhibits blood coagulation by inhibiting vitamin K 2,3-epoxide reductase (VKOR) activity leading to hemorrhage. However, it has been reported that repeated or long-term treatment with warfarin results in resistance emerging in wild rodents. Such resistance may explain why it is difficult to control rodents in many regions in Japan. In this report, we studied mutations in the VKOR gene (including the VKOR complex subunit 1 (VKORC1)), while also analyzing VKOR and clotting factor activity in black rats (Rattus rattus) in order to understand better the mechanism of warfarin resistance in this species.We sequenced the VKORC1 gene from 275 rats living in the wild in Japan. We found several types of novel base substitutions, some of which conferred warfarin resistance.There was no difference in coagulation times between warfarin-sensitive and resistant rats measured under physiological conditions. However, after warfarin administration, no effect was noted in warfarin-resistant rats, although a prolonged coagulation time was noted in warfarin-sensitive rats.We also determined the kinetic differences in hepatic microsomal VKOR-dependent activity between warfarin-resistant and sensitive rats. Warfarin-resistant rats showed 2-3-fold lower Vmax/Km values than did sensitive rats. In addition, we report that resistant rats found in the Tokyo area had a VKOR activity which was poorly inhibited by warfarin.Finally, we conclude that reduced VKOR activity and warfarin resistance in the Japanese black rat might be due to mutations in the VKORC1 gene. However, further study is needed to clarify how such rats can maintain adequate vitamin K-dependent clotting factor levels, while simultaneously exhibiting low VKOR activity and warfarin resistance.
Keywords:Warfarin resistance  Rattus rattus  Vitamin K epoxide reductase  VKOR activity  Coagulation time
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号