首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying the Impact Factors of Different Forms of Potassium and Absorptions by Different Cotton Genotypes
Abstract:This study focuses on two genotypes of cotton and explores different factors that were able to affect the release of different forms of potassium (K) in the rhizosphere by considering a biogeochemical process integrating plants, soils, and microorganisms. The study indicated that both genotypes of cotton could effectively absorb exchangeable potassium (eK) under limited potassium (LK) supply, and cotton plants could use LK to sustain offspring, preferably under K-deficiency conditions. It was mainly due to its significantly greater active absorbing surface area of root and comparatively greater K+ maximum uptake rate (Imax), which caused more K accumulation in the high-efficiency genotype cotton (HEG). Although Imax of the low-efficiency genotype cotton’s (LEG’s) was greater, K accumulation in LEG was less, which might be attributed to its significantly lower HEG and feedback inhibition on K taken up by greater K concentration in the plant. The lint yield had a significant positive correlation with boll number per plant, single boll weight, plant height, and number of fruit branches, which indicated that increasing these agronomic parameters is the base for increasing lint yield. There was a synergic action among humus, microorganisms, and K in the rhizosphere soil. The cation exchange capacity (CEC) of reduced soils was less under oxidized condition, due to collapse of the interlayer in response to increased layer charge upon structural Fe reduction. Crop yields can be increased when fertilizer K is applied according to proper ratio among different forms of potassium and humic acid in soils. The middle-high plant height, lower initial fruit branch, more fruit branches, more bolls, and larger boll size should receive more attention during high-yielding cotton breeding.
Keywords:Environmental factor  path model  potassium  rhizosphere soil
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号