首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomass, carbon and nitrogen dynamics of multi-species riparian buffers within an agricultural watershed in Iowa, USA
Authors:A Tufekcioglu  JW Raich  TM Isenhart  RC Schultz
Institution:(1) Department of Forestry, Kafkas University, Artvin Orman Fakultesi, Artvin, Turkey;(2) Department of Botany, Iowa State University, 353 Bessey Hall, Ames, IA 50011, USA;(3) Department of Forestry, Iowa State University, 253 Bessey Hall, Ames, IA 50011, USA
Abstract:This study was conducted to determine biomass dynamics, carbon sequestration and plant nitrogen immobilization in multispecies riparian buffers, cool-season grass buffers and adjacent crop fields in central Iowa. The seven-year-old multispecies buffers were composed of poplar (Populus×euroamericana lsquoEugeneirsquo) and switchgrass (Panicum virgatum L.). The cool-season grass buffers were dominated by non-native forage grasses (Bromus inermis Leysser., Phleum pratense L. and Poa pratensis L). Crop fields were under an annual corn-soybean rotation. Aboveground non-woody live and dead biomass were determined by direct harvests throughout two growing seasons. The dynamics of fine (0–2 mm) and small roots (2–5 mm) were assessed by sequentially collecting 35 cm deep, 5.4 cm diameter cores (125 cm deep cores in the second year) from April through November. Biomass of poplar trees was estimated using allometric equations developed by destructive sampling of trees. Poplar had the greatest aboveground live biomass, N and C pools, while switchgrass had the highest mean aboveground dead biomass, C and N pools. Over the two-year sampling period, live fine root biomass and root C and N in the riparian buffers were significantly greater than in crop fields. Growing-season mean biomass, C and N pools were greater in the multispecies buffer than in either of the crop fields or cool-season grass buffers. Rates of C accumulation in plant and litter biomass in the planted poplar and switchgrass stands averaged 2960 and 820 kg C ha–1 y–1, respectively. Nitrogen immobilization rates in the poplar stands and switchgrass sites averaged 37 and 16 kg N ha–1 y–1, respectively. Planted riparian buffers containing native perennial species therefore have the potential to sequester C from the atmosphere, and to immobilize N in biomass, therefore slowing or preventing N losses to the atmosphere and to ground and surface waters.This revised version was published online in November 2005 with corrections to the Cover Date.
Keywords:Corn  Poplar  Root biomass  Switchgrass
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号