首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of durable resistance to stem rust in barley
Authors:Brian J. Steffenson
Affiliation:(1) Department of Plant Pathology, North Dakota State University, 58105 Fargo, ND, USA
Abstract:Summary Since the mid-1940's, barley cultivars grown in the northern Great Plains of the USA and Canada have been resistant to stem rust caused byPuccinia graminis f. sp.tritici. This durable resistance is largely conferred by a single gene,Rpg1, derived from a single plant selection of the cultivar Wisconsin 37 and an unimproved Swiss cultivar. At the seedling stage, barley genotypes withRpg1 generally exhibit low mesothetic reactions at 16–20° C and slightly higher mesothetic reactions at 24–28° C to many stem rust pathotypes. This resistance is manifested by a low level of rust infection and mostly incompatible type uredia on adult plants.Rpg1 reacts in a pathotype-specific manner since some genotypes ofP. g. f. sp.tritici are virulent on cultivars carrying this gene in the field. Several factors may have contributed to the longevity of stem rust resistance in barley, a) since barley is planted early and matures early, it can sometimes escape damage from stem rust inoculum carried from the south; b) one or more minor genes may augment the level of resistance already provided byRpg1; c) the cultivation of resistant wheat cultivars and eradication of barberry have reduced the effective population size and number of potential new pathotypes ofP. g. f. sp.tritici, respectively; and d) virulent pathotypes ofP. g. f. sp.tritici andP. g. f. sp.secalis have not become established. This situation changed in 1989 when a virulent pathotype (Pgt-QCC) ofP. g. f. sp.tritici became widely distributed over the Great Plains. However,Rpg1 may still confer some degree of resistance to pathotype QCC because stem rust severities have been low to moderate and yield losses light on barley cultivars carrying the gene during the last four seasons (1989–1992). Several sources of incomplete resistance to pathotype QCC have been identified in barley. To facilitate the transfer of resistance genes from these sources into advanced breeding lines, molecular marker assisted selection is being employed.
Keywords:barley  doubled haploids  durable resistance  gene pyramiding  genetic diversity  Hordeum vulgare  molecular marker assisted selection  Puccinia graminis f. sp.secalis  Puccinia graminis f. sp.tritici  resistance genes  rye stem rust  wheat stem rust
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号