首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of feed restriction and cold exposure on glucose metabolism in response to feeding and insulin in sheep.
Authors:H Sano  A Takebayashi  Y Kodama  K Nakamura  H Ito  Y Arino  T Fujita  H Takahashi  K Ambo
Institution:Department of Bioscience and Technology, Faculty of Agriculture, Iwate University, Morioka, Japan. sano@iwate-u.ac.jp
Abstract:The effects of feed restriction, cold exposure, and the initiation of feeding on blood glucose metabolism, other blood metabolites, hormones, and tissue responsiveness and sensitivity to insulin were measured in sheep. The sheep consumed orchardgrass hay ad libitum (AL) or were restricted to 82% of the ME requirement for maintenance (RE) and were exposed to a thermoneutral (20 degrees C) or a cold environment (2 degrees C). An isotope dilution method and a glucose clamp approach were applied to determine blood glucose metabolism and insulin action, respectively. Plasma NEFA and insulin concentrations were influenced by feed restriction. Concentrations of plasma glucose, NEFA, insulin, and glucagon were influenced by cold exposure. Plasma NEFA concentration for RE decreased after the initiation of feeding and plasma insulin concentration increased transiently for all treatments. U-13C]Glucose was continuously infused for 8 or 7 h after a priming injection starting 3 h before the initiation of either feeding or insulin infusion, respectively. When responses to feeding were studied, blood glucose turnover rate was less (P < .001) for RE than for AL, and it was greater (P < .001) during cold exposure than in the thermoneutral environment. The rate changed little after the initiation of feeding. For the glucose clamp approach, insulin was infused over four sequential 1-h periods at rates from .64 to 10 mU x kg BW(-1) x min(-1), with concomitant glucose infusion to maintain preinfusion plasma glucose concentrations. The rates of glucose infusion and blood glucose turnover increased (P < .001) dose-dependently with insulin infusion rate. The maximal glucose infusion rate was greater (P < .05) for RE than for AL and was greater (P < .001) during cold exposure than in the thermoneutral environment. The plasma insulin concentration at half-maximal glucose infusion rate was lower (P < .1) during cold exposure. Blood glucose turnover rate tended to be greater (P = .10) for RE than for AL, and it was greater (P < .001) during cold exposure than in the thermoneutral environment. The ratio of endogenous production to utilization of glucose was suppressed by insulin infusion. In sheep fed a roughage diet, blood glucose turnover rate seems to be influenced by both intake level and environmental temperature, but not by the act of feeding. Moreover, the action of insulin on glucose metabolism is enhanced during cold exposure, and the effect of feed restriction is somewhat enhanced.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号