首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of bending properties Co-woven-knitted and Multi-layered biaxial Weft-knitted fabric reinforced composites
Authors:Yanhua Xu  Xinlin Yuan  Ni Wang  Zhaolin Liu
Institution:1. School of Arts & Garments Engineering, Changshu Institute of Technology, Changshu, 215500, China
2. College of Textiles, Donghua University, Shanghai, 201620, China
3. College of Textile and Garments, Hebei University of Science and Technology, Shijiazhuang, 050018, China
Abstract:Co-woven-knitted (CWK) fabrics and multi-layered biaxial weft knitted (MBWK) fabrics were prepared using glass filaments as both the warp and weft yarns and high tenacity polyesters as the stitch yarns with the same stitch length. Then the polyethylene resin was injected into the fabrics by vacuum assisted resin transfer molding to produce composites. Specific bending stress-displacement curves in the course and wale directions of the CWK fabric reinforced composites and the MBWK fabric reinforced composites were analyzed and their bending properties were also compared. Results indicate that the initial segments of all the specific bending stress-displacement curves for the CWK and the MBWK fabric reinforced composites are linear; then the specific bending stresses decrease with the displacements in a wave-like manner until sample destruction. The CWK fabric reinforced composites show plastic failure in course and wale directions, while the MBWK fabric reinforced composites show first fragile failure then plastic failure in course direction and show plastic failure in wale direction. Bending properties in the course direction of the CWK and the MBWK fabric reinforced composites are different from those in their wale direction, respectively. The CWK fabric reinforced composites are of smaller anisotropy than the MBWK fabric reinforced composites. By designing the buckling and distribution of the warp and weft yarns, the axial properties difference can be shortened.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号