Genetic control of photoperiodic sensivity and maturity in spring wheat within narrow limits of adaptation |
| |
Authors: | G. M. Halloran |
| |
Affiliation: | (1) School of Agriculture and Forestry, University of Melbourne, 3052 Parkville, Victoria, Australia |
| |
Abstract: | Summary Photoperiodic respose, as assessed by a regression technique, exhibited complete dominance averaged over the crosses of an eight parent diallel in the vernalized condition. Photoperiodic response as final leaf number for the vernalized 8-hour photoperiod diallel was closely related to photoeriodic response of the regression method. However, the diallel analyses of both sets of data showed little agreement in terms of respectieve array positions.The inheritance of photoperiodic response in diallels using regression values showed little agreement between the vernalized and unvernalized conditions. This difference was postulated to be due to interaction of vernalization and photoperiodic response in the unvernalized situation. In the unvernalized condition photoperiodic response exhibited non-allelic interaction, attributable mainly to the cultivar Pinnacle in general behaviour in its crosses. Its removal gave a situation of high average dominance for photoperiodic response with a clear indication that high photoperiodic sensitivity was dominant to comparative insensitivity.Days to ear emergence (vernalized and 18-hour photoperiod) exhibited non-allelic interaction in its expression, due mainly to the general behaviour of the cultivar Pinnacle in its crosses. Removal of its array gave a situation of a moderately strong degree of overdominance in the expression of days to ear emergence. Maturity differences amongst parents and F1's, vernalized and under 18-hour photoperiod, are postulated to be due to a factor other than vernalization or photoperiodic response beheved to be growth temperature in differentially in fluencing growth and/or developmental rates between genotypes. |
| |
Keywords: | Triticum aestivum wheat photoperiodic sensitivity maturity genetics adaptation |
本文献已被 SpringerLink 等数据库收录! |
|