摘 要: | 准确识别玉米病害有助于对病害进行及时有效的防治。针对传统方法对于玉米叶片病害识别精度低和模型泛化能力弱等问题,该研究提出了一种基于改进卷积神经网络模型的玉米叶片病害识别方法。改进后的模型由大小为3×3的卷积层堆栈和Inception模块与Res Net模块组成的特征融合网络两部分组成,其中3×3卷积层的堆栈用于增加特征映射的区域大小,Inception模块和Res Net模块的结合用于提取出玉米叶片病害的可区分特征。同时模型通过对批处理大小、学习率和dropout参数进行优化选择,确定了试验的最佳参数值。试验结果表明,与经典机器学习模型如最近邻节点算法(K-Nearest Neighbor,KNN)、支持向量机(Support Vector Machine,SVM)和反向传播神经网络(Back Propagation Neural Networks,BPNN)以及深度学习模型如Alex Net、VGG16、Res Net和Inception-v3相比,经典机器学习模型的识别率最高为77%,该研究中改进后的卷积神经网络模型的识别率为98.73%,进一步提高了模型的稳定性,为玉米病害检测与识别的进一步研究提供了参考。
|