首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced Sequential Flushing Process for Removal of Mixed Contaminants from Soils
Authors:Krishna R. Reddy  Ashraf Z. Al-Hamdan
Affiliation:1. Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
2. Department of Civil and Environmental Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL, 35899, USA
Abstract:The feasibility of a sequentially enhanced process for the remediation of soils contaminated by mixed contaminants, specifically multiple polycyclic aromatic hydrocarbons (PAHs) and heavy metals, was investigated. This process consists of sequential flushing using two chemical agents: a surfactant and a chelate. A series of laboratory column experiments was conducted with three different sequential schemes, designated as SEQ1, SEQ2, and SEQ3, in two distinct flushing stages, to remove PAHs and heavy metals from a field-contaminated soil. The SEQ1 scheme involved flushing 0.2 M ethylenediaminetetraacetic acid (EDTA) followed by flushing 5 % Igepal. The SEQ2 scheme involved flushing 5 % Igepal followed by flushing 0.2 M EDTA. SEQ1 was investigated under a constant hydraulic gradient of 1.2, while the SEQ2 scheme was investigated under hydraulic gradients that increased from 1.2 to 4.0. The SEQ3 scheme consisted of sequential flushing of 5 % Igepal (first stage) and 0.2 M EDTA (second stage) under a constant low hydraulic gradient of 0.2. The selected sequential schemes allowed an assessment of the efficacy of sequencing the surfactant and chelating flushing for the removal of multiple heavy metals and PAHs under various hydraulic gradients. The hydraulic conductivity (or flow) was found to vary depending on the flushing agent and the sequence scheme. Under the high hydraulic gradient, the hydraulic conductivity was lower during chelant flushing stage as compared with surfactant flushing stage in both SEQ1 and SEQ2. However, under a low gradient condition (SEQ3), the hydraulic conductivity was approximately the same during both chelant and surfactant flushing stages. The contaminant removal was also significantly affected by the flushing agent and sequence and the applied hydraulic gradient. Heavy metals were removed during chelant flushing, while PAHs were removed during surfactant flushing. The total removal efficiencies of Pb, Zn, and Cu were 76 %, 63 %, and 11 % in SEQ1 and 42 %, 40 %, and 7 % in SEQ2, respectively, while the total removal efficiencies of phenanthrene, anthracene, benz(a)anthracene, and pyrene were 51 %, 35 %, 58 %, and 39 % in SEQ1 and 69 %, 50 %, 65 %, and 69 % in SEQ2, respectively. Overall, the total mass removal of heavy metals and PAHs was higher in SEQ1 as compared with SEQ2, demonstrating that SEQ1 is the effective sequence scheme. Comparison of the results of high and low gradient conditions (SEQ2 and SEQ3) reveals that the removal of contaminants, especially heavy metals, is rate-limited. Overall, this study showed that the removal of co-existing heavy metals and PAHs from soils is possible through the careful selection of the sequence under which the flushing of chelant and surfactant occurs and depends on the site-specific soil and contaminant conditions. Additional research is needed to establish the most optimal flushing scheme (sequence duration and flow velocity) to remove the mixed contaminants effectively and efficiently.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号