Physico-chemical description of bread dough mixing using two-dimensional near-infrared correlation spectroscopy and moving-window two-dimensional correlation spectroscopy |
| |
Authors: | A. Aï t Kaddour, C. Barron, P. Robert,B. Cuq, |
| |
Affiliation: | aUMR 1208 Ingénierie des Agropolymères et Technologies Emergentes, CIRAD, INRA, Montpellier SupAgro, Université Montpellier 2, F-34000 Montpellier, France;bUR Biopolymère, Interactions, Assemblages, INRA F-44000 Nantes, France |
| |
Abstract: | NIR spectroscopy presents a huge interest in exploring chemical changes during dough mixing. The aim of the present study is to investigate the potential of 2D correlation spectroscopy (2D COS) and moving-window 2D (MW2D) correlation spectroscopy to explore the time dependence of NIR spectral responses during wheat flour dough mixing. NIR spectra were continuously recorded (between 1400 and 2325 nm) during mixing of bread type-dough (based on flour, water and yeast), using an FT-NIR spectrometer with a deported probe. The probe was positioned inside the mixer in contact with the dough. The 2D spectra calculated using raw and second derivative NIR spectra were interpreted in terms of physico-chemical events. Nine different industrial flours were used as raw material to validate the analysis. The results obtained using the 2D COS and the MW2D methods give the possibility to ascribe chemical vibrations (starch, water and gluten) to NIR absorbance changes occurring during dough mixing. The analysis of the NIR spectra identified wavelength shift associated to both dough “free water” and protein secondary structure modifications. During this study, only the MW2D method allowed to identify clearly the time dependence of physico-chemical mechanisms from NIR variation bands. |
| |
Keywords: | Dough mixing NIR spectroscopy 2D COS MW2D |
本文献已被 ScienceDirect 等数据库收录! |
|