首页 | 本学科首页   官方微博 | 高级检索  
     


Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide
Authors:Opalski Krystina S  Tresch Stefan  Kogel Karl-Heinz  Grossmann Klaus  Köhle Harald  Hückelhoven Ralph
Affiliation:Institute of Phytopathology and Applied Zoology, Justus-Liebig University Giessen, Heinrich-Buff Ring 26-32, D-35392 Giessen, Germany.
Abstract:Powdery mildew fungi are among the major pathogens causing diseases of cereals in the world. The mode of action of a novel systemic benzophenone fungicide, metrafenone, which is based on a precursor that is discussed in the preceding paper, has been analysed on the powdery mildew fungi of barley (Blumeria graminis Speer f. sp. hordei Marchal) and wheat (Blumeria graminis Speer f. sp. tritici Marchal). Preventive treatments reduced germination and blocked development beyond formation of appressoria, which penetrated less often. Moreover, metrafenone turned out to be an efficient curative fungicide, which rapidly affected fungal survival at low concentrations. The fungicide induced swelling, bursting and collapse of hyphal tips, resulting in the release of globules of cytoplasm. Bifurcation of hyphal tips, secondary appressoria and hyperbranching were also frequently observed. A histochemical analysis showed that metrafenone caused disruption of the apical actin cap and apical vesicle transport as well as weakening of the cell wall at hyphal tips. Finally, metrafenone strongly reduced sporulation. Reduced sporulation was associated with malformation of conidiophores that showed irregular septation, multinucleate cells and delocalisation of actin. Microtubules appeared to be only secondarily affected in metrafenone-treated B. graminis. The results suggest that the mode of action of metrafenone interferes with hyphal morphogenesis, polarised hyphal growth and the establishment and maintenance of cell polarity. Metrafenone likely disturbs a pathway regulating organisation of the actin cytoskeleton.
Keywords:metrafenone  Blumeria graminis f. sp. hordei  Blumeria graminis f. sp. tritici  cell polarity  actin cytoskeleton
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号