摘 要: | 目的 为提高小麦条锈病危害程度分级精度,开展小麦条锈病病害等级自动化、准确、快速识别方法研究。方法 在复杂田间条件下,使用手机拍摄图像,构建含有不同等级条锈病的小麦叶片数据集,利用GrabCut与YOLOv5s相结合的方法进行小麦叶片与复杂背景自动化分割。为了增强ResNet50对表型特征的提取能力,增加Inception模块,依据划分的小麦条锈病病害等级标准,对小麦条锈病病害等级进行识别。采用准确率、查全率、查准率等评价指标分析改进的ResNet50模型(B-ResNet50)在数据集上的表现。结果 GrabCut与YOLOv5s相结合对大田复杂背景下的小麦叶片图像实现了自动、准确、快速地分割。B-ResNet50识别小麦条锈病叶片的平均准确率为97.3%,与InceptionV3(87.8%)、DenseNet121(87.6%)、ResNet50(88.3%)相比,准确率大幅提升,比原始模型(ResNet50)高出9个百分点。结论 利用深度学习对小麦条锈病病害等级进行识别,对防治小麦条锈病的精准施药具有重要意义,可为田间复杂条件下小麦条锈病的防治提供技术支持。
|