首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv5的草莓病害识别
作者姓名:邱畅  田光兆  赵嘉威  谢尚杰  郑奎
作者单位:1. 南京农业大学人工智能学院;2. 南京农业大学工学院
基金项目:国家自然科学基金资助项目(31401291);
摘    要:为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。

关 键 词:草莓  YOLOv5  机器视觉  深度学习  病害识别
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号