首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Targeted Knock-in of a Fluorescent Protein Gene into the Chicken Vasa Homolog Locus of Chicken Primordial Germ Cells using CRIS-PITCh Method
Authors:Ryo Ezaki  Kennosuke Ichikawa  Mei Matsuzaki  Hiroyuki Horiuchi
Institution:Laboratory of Immunobiology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
Abstract:In chickens, primordial germ cells (PGCs) are effective targets for advanced genome editing, including gene knock-in. Although a long-term culture system has been established for chicken PGCs, it is necessary to select a gene-editing tool that is efficient and precise for editing the PGC genome while maintaining its ability to contribute to the reproductive system. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and CRISPR-mediated precise integration into the target chromosome (CRIS-PITCh) methods are superior as the donor vector is easier to construct, has high genome editing efficiency, and does not select target cells, compared to the homologous recombination method, which has been conventionally used to generate knock-in chickens. In this study, we engineered knock-in chicken PGCs by integrating a fluorescent protein gene cassette as a fusion protein into the chicken vasa homolog (CVH) locus of chicken PGCs using the CRIS-PITCh method. The knock-in PGCs expressed the fluorescent protein in vitro and in vivo, facilitating the tracking of PGCs. Furthermore, we characterized the efficiency of engineering double knock-in cell lines. Knock-in cell clones were obtained by limiting dilution, and the efficiency of engineering double knock-in cell lines was confirmed by genotyping. We found that 82% of the analyzed clones were successfully knocked-in into both alleles. We suggest that the production of model chicken from the knock-in PGCs can contribute to various studies, such as the elucidation of the fate of germ cells and sex determination in chicken.
Keywords:chicken  chicken vasa homolog  CRISPR/Cas9  precise integration into target chromosome method  primordial germ cell
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号