首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mitigation of Salt Stress Negative Effects on Sweet Pepper Using Arbuscular Mycorrhizal Fungi (AMF), <Emphasis Type="Italic">Bacillus megaterium</Emphasis> and Brassinosteroids (BRs)
Authors:Amira M Hegazi  Amal M El-Shraiy  A A Ghoname
Institution:1.Agric. Botany Department, Faculty of Agriculture,Ain Shams Univ,Cairo,Egypt;2.Vegetable Research Department,National Research Center, Dokki,Cairo,Egypt
Abstract:A study was conducted at the experimental farm of Faculty of Agriculture, Ain Shams University, Cairo, Egypt, during two successive summer seasons (2014 and 2015) to investigate the effects of arbuscular mycorrhizal fungi (Glomus irradicans 10% w/w), Bacillus megaterium (10?ml/pot) and brassinosteroids (24-EBL, C28H48O6; 2?µM) on growth, nutrient absorption, chlorophyll, proline content, antioxidant enzymes activity and fruit yield of sweet pepper plants (Capsicum annuum L.) cv. Marconi. Plants were grown under three levels of salinity (0, 25 and 50?mM). The obtained results showed that plants grown under non-saline water (0?mM NaCl), with or without treatments, significantly gave the most vigorous vegetative growth and had the highest fruit yield compared with those grown under salt stress conditions. All anti-salinity treatments (Mycorrhiza, Bacillus and Brassinosteroids) improved growth when compared with untreated plants (control). Plants inoculated with mycorrhiza or treated with brassinosteroids showed better vegetative growth and shoot biomass (total fresh and dry weight per plant), chlorophyll a and b concentrations, antioxidant content expressed as total soluble phenols and proline concentrations at all studied salinity levels followed by plants inoculated with Bacillus megaterium compared with control plants which showed severe growth retardant especially under higher salt concentration (50?mM). Carotenoids concentration increased proportionally with the increase of salinity concentration. The maximum leaf relative water content (LRWC) and lowest values of membrane permeability (MP) were significantly observed with mychorhiza inoculated plants and brassinosteroid application respectively, followed by Bacillus inoculated plants. Antioxidant enzyme activity were highest in plants irrigated with moderate saline water (25?mM) than plants under high salinity irrigation water (50?mM) except polyphenol oxidase (PPO) as compared with unstressed plants (0?mM). Mycorrhizal inoculated plants accumulated higher K and lower Na and Cl followed by plants treated with brassinosteroids and then plants inoculated with Bacillus megaterium. Anti-salinity treatments positively enhanced fruit yield of sweet pepper plants under all salinity stress levels and the highest fruit yield were significantly observed with brassinosteroid application followed by mychorhiza inoculated plants and then Bacillus inoculated plants.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号