首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Interaction effects of nitrogen and phosphorus fertilizer on nitrogen mineralization of wheat residues in a calcareous soil
Abstract:Abstract

Because of the high pH of the soil in semiarid regions, phosphorus adsorption is unfavorable. So, considerable amounts of phosphorus fertilizers are used annually, where this fertilizer may affect the plant residues' decomposition. To examine the interaction effects of nitrogen and phosphorus on nitrogen mineralization in calcareous soil, a factorial experiment was performed in a completely randomized design with three replications. The first factor consisted of various C:N ratios (20, 40, and 60 or three levels of nitrogen N1:0, N2:11, and N3:43?kg N ha?1, respectively) and the second factor consisted of various C:P ratios (87, 174, and 260 or three levels of phosphorus P1:0, P2:12, and P3:45?kg P ha?1, respectively), under incubation conditions. The results indicated that the cumulative mineral nitrogen content in all treatments, except for N1P2 and N1P3 treatments, started from a positive amount and remained positive until the end of the incubation period. The highest amount of cumulative mineral nitrogen among treatments was related to N3P1 treatment, while the lowest was associated with N2P3 treatment. Mineralization of nitrogen during 60?d of incubation was the dominant phenomenon, except for the N1P2 and N1P3 treatments which remained in the organic phase. The effect of phosphorus on the cumulative mineralization of nitrogen was significant. With increasing the amount of phosphorus, the total inorganic nitrogen diminished. Nitrogen release begins earlier with lower C:N ratios, and therefore the available nitrogen can be released more quickly to the plant. It is generally concluded that, in calcareous soil, the use of nitrogen fertilizer to adjust C:N ratio and to improve the mineralization of wheat residues will be a suitable option.
Keywords:nitrogen mineralization  nitrogen mineralization rate  plant residues  phosphorus
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号