首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series
Authors:Frank Dondelinger  Dirk Husmeier  Sophie Lèbre
Affiliation:1.Biomathematics and Statistics Scotland,Edinburgh,UK;2.Université de Strasbourg, LSIIT - UMR 7005,Illkirch,France
Abstract:To understand the processes of growth and biomass production in plants, we ultimately need to elucidate the structure of the underlying regulatory networks at the molecular level. The advent of high-throughput postgenomic technologies has spurred substantial interest in reverse engineering these networks from data, and several techniques from machine learning and multivariate statistics have recently been proposed. The present article discusses the problem of inferring gene regulatory networks from gene expression time series, and we focus our exposition on the methodology of Bayesian networks. We describe dynamic Bayesian networks and explain their advantages over other statistical methods. We introduce a novel information sharing scheme, which allows us to infer gene regulatory networks from multiple sources of gene expression data more accurately. We illustrate and test this method on a set of synthetic data, using three different measures to quantify the network reconstruction accuracy. The main application of our method is related to the problem of circadian regulation in plants, where we aim to reconstruct the regulatory networks of nine circadian genes in Arabidopsis thaliana from four gene expression time series obtained under different experimental conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号