首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积神经网络的微藻种类识别
引用本文:崔雪森,田晓清,康伟,朱浩朋,张胜茂,JOE Silke,戴阳,樊成奇. 基于卷积神经网络的微藻种类识别[J]. 上海海洋大学学报, 2021, 30(4): 710-717
作者姓名:崔雪森  田晓清  康伟  朱浩朋  张胜茂  JOE Silke  戴阳  樊成奇
作者单位:中国水产科学研究院东海水产研究所农业农村部远洋与极地渔业创新重点实验室,上海 200090;中国水产科学研究院东海水产研究所水产品质量安全与加工实验室,上海 200090;Marine Institute of Ireland,Ireland 999014
基金项目:中央级公益性科研院所基本科研业务费专项资助项目(2018GH13),中国水产科学研究院基本科研业务费资助项目(2020TD68),中央级公益性科研院所基本科研业务费专项资助项目(2019T08)
摘    要:微藻在生态系统的结构和功能中具有极为重要的作用,而传统光学人工镜检方法对微藻种类鉴别具有较大的难度。本研究将微藻的光学图像进行了采样,并结合国内外专家对微藻鉴定的经验知识,制作了微藻图像数据集,并进行了数据增强处理。借助深度学习的原理和方法,构建了基于卷积神经网络结构的深度学习模型(AlexNet),对模型进行了训练,并利用5折交叉验证方法确保模型的稳定性。结果表明,模型的训练精度可达到98.78±0.98%,测试精度达85.46±0.23%,达到了预期效果。利用AlexNet模型训练得到的参数,对预留的280个样本图像进行实际测试,7个藻种的平均精确度、平均召回率和平均F1 Score分别为0.832,0.844和0.833。表明深度学习方法是鉴定微藻的一种有效方法。

关 键 词:微藻  卷积神经网络  自动识别
收稿时间:2020-05-28
修稿时间:2020-10-14

Identification of microalgae species based on convolutional neural network
CUI Xuesen,TIAN Xiaoqing,KANG Wei,ZHU Haopeng,ZHANG Shengmao,JOE Silke,DAI Yang,FAN Chengqi. Identification of microalgae species based on convolutional neural network[J]. Journal of Shanghai Ocean University, 2021, 30(4): 710-717
Authors:CUI Xuesen  TIAN Xiaoqing  KANG Wei  ZHU Haopeng  ZHANG Shengmao  JOE Silke  DAI Yang  FAN Chengqi
Affiliation:East China Sea Fisheries Research Institute,East China Sea Fisheries Research Institute,East China Sea Fisheries Research Institute,East China Sea Fisheries Research Institute,East China Sea Fisheries Research Institute,Marine Institute of Ireland,East China Sea Fisheries Research Institute,East China Sea Fisheries Research Institute
Abstract:In this study, optical images of 7 microalgae were sampled. Based on the experience and knowledge of experts at home and abroad on identification of marine microalgae, an image data set labeled with algae names was made and data enhancement was carried out.With the help of the principles and methods of deep learning, the AlexNet model based on the structure of convolutional neural network was designed and trained.The 5-fold cross validation method was applied to ensure the stability of the model.The results showed that the average training accuracy of the model can reach 97.86%±1.63%and the average testing accuracy can reach 85.86%±0.80%. By using the parameters obtained from AlexNet model training, the reserved 280 sample images were actually tested.The average accuracy, average recall rate and average F1 Score of the 7 algal species were 83.2%,84.4% and 83.3%, respectively.It was indicated that the deep learning method is an effective way to identify marine toxic algal species.
Keywords:microalgae  Convolutional neural network  Automatic identification
本文献已被 万方数据 等数据库收录!
点击此处可从《上海海洋大学学报》浏览原始摘要信息
点击此处可从《上海海洋大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号