首页 | 本学科首页   官方微博 | 高级检索  
     


Evaluation of HYDRUS-2D model to simulate the loss of nitrate in subsurface controlled drainage in a physical model scale of paddy fields
Authors:Avishan Amin Salehi  Maryam Navabian  Mehdi Esmaeili Varaki  Nader Pirmoradian
Affiliation:1.Department of Water Engineering, Faculty of Agricultural Sciences,University of Guilan,Rasht,Iran
Abstract:Agriculture is a major source of nitrogen usage and release to environment. Due to the effect of water movement on solute transport, investigating the effect of different management scenarios of irrigation and drainage could be useful for reducing nitrate loss and environmental pollution. This study is a scientific attempt to assess the ability of HYDRUS-2D model to simulate the effect of subsurface controlled drainage on nitrate loss of paddy fields. So, two physical models with difference in depth of subsurface controlled drainage (40 and 60 cm) were constructed. The tanks were filled with loam silty soil texture and then transplanted rice. 90 kg/ha potassium nitrate fertilizer was added in two stages of rice growth. Mid-season drainage was applied 26 days after transplantation. After 17 days, drains were closed again and applied flooded irrigation with 5-cm water stagnant layer above soil surface. During experiment, nitrate concentration of drain water was measured. HYDRUS-2D was calibrated with measured data in 60 cm drain depth and validated with 40 cm drain depth. HYDRUS-2D could simulate nitrate concentration with the coefficient of determination 0.95 and 0.89 in calibration and validation stages, respectively. The comparison between the volume of drain water and nitrate concentration from the drains in the depths of 40 and 60 cm indicated lower nitrate load in depth of 40 cm. The results obtained proved that the presence of hardpan layer in depth of 25 cm rather than the absence of it causes increase in 3 % of average nitrate concentration and reduce in 17 % of water discharge.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号