首页 | 本学科首页   官方微博 | 高级检索  
     


Japanese Society for Animal Reproduction: award for outstanding research 2002. Cryopreservation of follicular oocytes and preimplantation embryos in cattle and horses
Authors:Hochi Shinichi
Affiliation:Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan.
Abstract:Factors affecting sensitivity of preimplantation embryos and follicular oocytes to cryopreservation were analyzed in the equine and bovine species. (1) Survival of equine blastocysts after two-step freezing in the presence of glycerol as the cryoprotective agent (CPA) was influenced by development of the embryonic capsule. The use of ethylene glycol (EG) with sucrose as CPAs improved the post-thaw survival of blastocysts and made it possible to transfer the embryos into recipient mares without removing the CPAs. In addition, early blastocysts cryopreserved by vitrification could develop both in vitro and in vivo when the embryos were exposed to vitrification solution in a stepwise manner. The vitrification procedure was also applied to the relatively large expanded blastocysts. (2) Bovine embryos produced in vitro have been considered to be highly sensitive to the process of cryopreservation. To solve this problem, Day-7 blastocysts produced in a serum-free system were cooled at 0.3 C/min rather than 0.6 C/min before being plunged into liquid nitrogen, resulting in no loss of the post-thaw viability. The supplementation of LAA in IVM/IVF media or IVC medium was effective in producing pronuclear-stage zygotes or morula-stage embryos relatively tolerable to freezing, respectively. (3) Transmission electron microscopic observation of immature equine oocytes showed that cellular injury occurred near the sites of gap-junctions between cumulus cells and the oocyte. In cattle, higher fertilization rates of oocytes were obtained when the oocytes were subjected to cryopreservation at an intermediate stage during IVM (GVBD for freezing, Met-I for vitrification). Vitrification of bovine Met-II oocytes in open-pulled glass capillaries, characterized by an ultra-rapid cooling rate (3,000-5,000 C/min), was found to avoid any harmful influence of vitrification and warming.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号