首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The multilayer model of soil mineral–organic interfaces—a review
Authors:Jiajia Gao  Robert Mikutta  Boris Jansen  Georg Guggenberger  Cordula Vogel  Karsten Kalbitz
Abstract:Association of organic matter (OM) with minerals is an important pathway in the formation of stable OM in soil. While the importance of mineral–organic associations (MOA) in regulating soil carbon cycling has been rigorously demonstrated by empirical evidence, knowledge about the molecular‐scale arrangement of OM at mineral surfaces is still lacking. Such knowledge is urgently needed to disentangle the mechanisms of long‐term storage of soil OM. Based on indirect observations regarding the formation, composition, and structure of MOA, a conceptual multilayer model was proposed by Kleber et al. in 2007 to foster debate and help elucidating the structure and reactivity of MOA. According to this model, the associated OM at mineral surfaces is discrete and self‐organized into a multilayer structure. In this review, we aim to collect and evaluate existing studies that used this model to explain biogeochemical processes at mineral–organic interfaces, and based on this, assess the applicability of the model. The multilayer model has seen extensive adoption within soil science and related fields. In general, existing studies either support the concept of a patchy distribution of adsorbed OM on mineral surfaces or advocate that OM can be coprecipitated with nanosized poorly crystalline minerals or hydrolysable metals. However, the evidence for the patchy distribution of adsorbed OM cannot support the multilayer model on its own. There is little consensus about the role of N‐rich OM in forming the contact zone according to the multilayer model but surface conditioning by different classes of organic compounds appears to be an essential factor for the overall adsorption of OM. Nevertheless, large uncertainty still remains with respect to multilayer‐like organization of MOA. By taking advantage of recent developments in surface analytical sciences and computational chemistry, a rigid experimental testing of the multilayer model at the molecular level is still required and awaits to be integrated into improved concepts of MOA formation and OM stabilization.
Keywords:adsorption  carbon dynamics  mineral–  organic associations  soil organic carbon  submicron imaging technique
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号