首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Partial replacement of rock phosphate by sewage sludge ash for the production of superphosphate fertilizers
Authors:Tobias Edward Hartmann  Kurt Mller  Carsten Meyer  Torsten Müller
Institution:Tobias Edward Hartmann,Kurt Möller,Carsten Meyer,Torsten Müller
Abstract:Thermal utilization of sewage sludge through mono‐incineration or gasification results in phosphorus (P) rich sewage sludge ash (SSA) that must be returned to agricultural production systems to fulfill the need for recycling of P resources contained in wastewater streams. As the plant‐availability of P contained in SSA is low, we propose feeding SSA directly into the production of superphosphate fertilizers, thereby opening a further pathway for the recycling of phosphorus (P) from wastewater streams to agricultural production systems by using available technologies. We carried out laboratory‐scale production of superphosphate test‐products, in which rock phosphate (RP) was partially replaced with SSA (gasification) before digestion with concentrated sulfuric acid, and evaluated these products with regard to the solubility of P in H2O and neutral ammoniumcitrate solution. We further carried out a growth‐chamber experiment (28 d) using maize (Zea mays L. cv. Sulano) as a model plant on a low P (0.4 mg PCAL 100g?1), high pH (7.6) substrate to evaluate plant P availability of the test products. Our laboratory‐scale results show that at least 8% of P from RP can be replaced by P from SSA while maintaining both the high solubility of P in the fertilizer product and the growth of maize compared to pure RP digested with concentrated sulfuric acid. Further substitution of RP through SSA decreased the total P concentration of the test products, as well as the relative amounts of P soluble in H2O and neutral ammoniumcitrate solution, which affected early plant development of maize.
Keywords:fertilizer  nutrient cycling  phosphorus recovery  sewage sludge ash  superphosphate  sustainability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号