首页 | 本学科首页   官方微博 | 高级检索  
     


Gas exchange and carbon isotope discrimination of Juniperus osteosperma and Juniperus occidentalis across environmental gradients in the Great Basin of western North America
Authors:Moore Darrin J.  Nowak Robert S.  Tausch Robin J.
Affiliation:Environmental and Resource Sciences, MS 370, University of Nevada, Reno, NV 89557, USA.
Abstract:We determined how ecophysiological characteristics of two juniper species, Juniperus occidentalis Hook. (western juniper) and Juniperus osteosperma (Torr.) Little (Utah juniper), changed along altitudinal and regional environmental gradients in the Great Basin of western North America. We obtained diurnal measurements of leaf gas exchange and xylem water potential (Psi) from plants at a low and a high altitude site within each of six mountain ranges during fall 1994, spring, summer, and fall 1995, and summer 1996. We also determined carbon isotope composition (delta(13)C) of leaf cellulose produced during the 1995 growing season. Overall, leaf gas exchange, Psi and delta(13)C did not differ significantly between species. Differences in daily (A(d)) and season-long (A(s)) carbon assimilation among mountain ranges suggested two groupings-a group of northern ranges and a group of southern ranges. Each group contained one mountain range with J. occidentalis and two with J. osteosperma. Differences in carbon assimilation based on this grouping were associated with two findings: (1) conductance of CO(2) from substomatal cavities to the site of carboxylation (g(m)) for junipers in the northern ranges averaged almost twice that of junipers in the southern ranges; and (2) physiological shifts occurred such that A(d) of junipers in the northern ranges was influenced more by Psi(pd), whereas A(d) of junipers in the southern ranges was influenced more by leaf temperature. Mean delta(13)C over all trees at a site was significantly correlated with annual precipitation. Significant differences in A(d) occurred between altitudes, but these differences were associated with differences in the timing of optimum leaf temperature for photosynthesis rather than with physiological acclimation to temperature, irradiance, or Psi. Most gas exchange parameters (e.g., assimilation, transpiration, stomatal conductance, and water use efficiency) varied seasonally, and the seasonal differences were strongly influenced by water stress.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号