首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physiological and morphological responses of olive plants to ozone exposure during a growing season
Authors:Minnocci Antonio  Panicucci Alberto  Sebastiani Luca  Lorenzini Giacomo  Vitagliano Claudio
Institution:Scuola Superiore di Studi Universitari e de Perfezionamento S. Anna, Via Carducci 40, I-56127 Pisa, Italy.
Abstract:We studied physiological (gas exchange and stomatal aperture) and morphological (individual leaf area and stomatal density) responses in leaves of five-year-old olive plants (Olea europaea L. cvs. Frantoio and Moraiolo) exposed to filtered air containing < 3 ppb O(3) or 100 ppb O(3) for 5 h day(-1) for 120 days in fumigation chambers. After 100 days of treatment, leaf drop and development of necrotic spots were observed in O(3)-fumigated plants of Moraiolo but not of Frantoio. Significant reductions in photosynthetic activity (57%) and stomatal conductance (69%) were detected in O(3)-fumigated plants of Frantoio compared with control plants. In O(3)-fumigated plants of Moraiolo, the decrease in photosynthetic activity (17%) was not statistically significant, but a significant reduction in stomatal conductance (40%) was observed. In both cultivars, leaves that developed after exposure to O(3) showed decreased stomatal aperture (63.6 and 54.8% with respect to the Frantoio and Moraiolo controls, respectively) and one-sided leaf area, and increased stomatal density compared with control leaves. Actual transpiring stomatal surface decreased substantially in both Frantoio (59.8%) and Moraiolo (56.3%) in response to O(3) treatment. Relative transpiring stomatal surface (RTSS) in Frantoio decreased from 0.54 (control) to 0.27% (O(3) treated) of total leaf surface. The corresponding values for Moraiolo were 0.79 and 0.42%. However, because the RTSS of Moraiolo leaves in the O(3) treatment was 0.42 versus 0.27% in Frantoio, the potential uptake of O(3) was higher for Moraiolo plants than for Frantoio plants. The large O(3)-induced reduction in transpiring stomatal surface in both cultivars could have significant effects on olive productivity in the Mediterranean area, where high O(3) concentrations persist for long periods during the year.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号