首页 | 本学科首页   官方微博 | 高级检索  
     检索      

生物质热解固体热载体高温烟气加热装置设计与试验
引用本文:王绍庆,李志合,吴厚凯,李宁,柏雪源.生物质热解固体热载体高温烟气加热装置设计与试验[J].农业工程学报,2017,33(4):89-95.
作者姓名:王绍庆  李志合  吴厚凯  李宁  柏雪源
作者单位:山东理工大学农业工程与食品科学学院/山东省清洁能源工程技术研究中心,淄博,255049
基金项目:国家自然科学基金项目(51276103),国家重点基金(51536009),泰山学者工程专项经费,山东省优势学科资助项目联合资助。
摘    要:固体热载体加热生物质是生物质热解制取生物油的工艺手段之一。为解决固体热载体间接加热方式升温慢、效率低问题,设计了一种流化床生物质燃烧的热烟气直接加热固体热载体装置,分析了其结构与原理,开展了固体热载体升温性能和流化床燃烧器的燃烧特性试验研究,并对试验结果进行了热平衡分析。结果表明:流化床高温烟气加热陶瓷球热载体的平均热能利用率为66.3%,流化床燃烧生物质粉产生的高温烟气能够满足热载体加热装置对热源的需求,热载体加热器内的热量传递方式主要是对流换热。陶瓷球热载体与加热器内高温烟气的对流传热系数为475 W/(m~2·℃)。研究对结果对解决生物质热解液化技术中的固体热载体加热升温关键问题具有重要指导意义。

关 键 词:生物质  燃烧  加热装置  流化床  固体热载体
收稿时间:2016/5/31 0:00:00
修稿时间:2016/12/19 0:00:00

Design and experiment on solid heat carrier heating device heated by high temperature flue gas for pyrolysis of biomass
Wang Shaoqing,Li Zhihe,Wu Houkai,Li Ning and Bai Xueyuan.Design and experiment on solid heat carrier heating device heated by high temperature flue gas for pyrolysis of biomass[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(4):89-95.
Authors:Wang Shaoqing  Li Zhihe  Wu Houkai  Li Ning and Bai Xueyuan
Institution:School of Agricultural and Food Engineering, Shandong University of Technology/Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255049, China,School of Agricultural and Food Engineering, Shandong University of Technology/Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255049, China,School of Agricultural and Food Engineering, Shandong University of Technology/Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255049, China,School of Agricultural and Food Engineering, Shandong University of Technology/Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255049, China and School of Agricultural and Food Engineering, Shandong University of Technology/Shandong Research Center of Engineering and Technology for Clean Energy, Zibo 255049, China
Abstract:Biomass is one of environment friendly and renewable resources, which is considered as an ideally clean energy. In general, the development and utilization of biomass energy aim at converting the solid agricultural and forestry wastes into gaseous, solid or liquid fuels by physical or chemical processing methods. Solid heat carrier heating biomass is one of the process means of preparing bio-oil from biomass pyrolysis. In order to solve the indirect heating slow and low efficiency problems of solid heat carrier heating, a solid heat carrier heating device heated by high temperature flue gas which was generated by fluidized bed combustor was designed, and its structure and principle were analyzed, including high temperature flue gas generator, feeder of ceramic ball, heat carrier heat exchanger, built-in baffle, data acquisition and control system. The device could carry out the solid heat carrier heating performance and the combustion characteristic of fluidized bed combustor. Furthermore, the heat balance analysis of test results was performed. Biomass powder fuel was conducted on proximate analysis, ultimate analysis and determination of low calorific value, the results showed that the biomass powder fuel was a kind of clean energy. By conducting tests of biomass powder fuel combustion on high temperature gas generating apparatus to determine optimum powder concentration was 240 g/m3. The fluidized bed combustion furnace temperature changes were analyzed under optimal wind powder concentration, which indicated that biomass powder burning had ideal effect, the burner could be continuous, stable producing high temperature flue gas. By studying the temperature variation during the heat exchange process of ceramic balls and high temperature flue gas, the convective heat transfer coefficient of ceramic ball and high temperature flue gas and the heat utilization efficiency of the device were obtained. The convection heat transfer coefficient between ceramic balls and the high temperature flue gas was calculated and heat energy utilization of heating equipment was detected. Results showed that the heat utilization efficiency of the heat carrier heater reached by 66.3%. The high temperature flue gas produced by biomass combustion in fluidized bed could satisfy the need of the heating of ceramic balls for biomass pyrolysis. The convection was the main heat transfer in the heat carrier heater and the convection heat transfer coefficient between ceramic balls and the high temperature flue gas was 475 W/(m2·℃). By heat balance analysis and heating capacity theory analysis of the device,it indicated that study results have important guiding significance for solving the biomass pyrolysis technology in the key solid heat carrier heating up issues.
Keywords:biomass  combustion  heating equipment  fluidized bed  solid heater carrier
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号