首页 | 本学科首页   官方微博 | 高级检索  
     


Elevation dependent sensitivity of northern hardwoods to Ca addition at Hubbard Brook Experimental Forest,NH, USA
Authors:Rakesh Minocha  Stephanie Long  Palaniswamy Thangavel  Subhash C. Minocha  Christopher Eagar  Charles T. Driscoll
Affiliation:1. Forest Service, U.S. Department of Agriculture, Northern Research Station, 271 Mast Road, Durham, NH 03824, USA;2. Department of Biological Sciences, University of New Hampshire, Durham, NH 03824, USA;3. Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, USA
Abstract:Acidic deposition has caused a depletion of calcium (Ca) in the northeastern forest soils. Wollastonite (Ca silicate) was added to watershed 1 (WS1) at the Hubbard Brook Experimental Forest (HBEF) in 1999 to evaluate its effects on various functions of the HBEF ecosystem. The effects of Ca addition on foliar soluble (extractable in 5% HClO4) ions, chlorophyll, polyamines, and amino acids were studied in three hardwood species, namely sugar maple, yellow birch, and American beech. We further analyzed these effects in relation to elevation at Ca-supplemented WS1 and reference WS3 watersheds. Foliar soluble Ca increased significantly in all species at mid and high elevations at Ca-supplemented WS1. This was accompanied by increases in soluble P, chlorophyll, and two amino acids, glutamate and glycine. A decrease in known metabolic indicators of physiological stress (i.e., the amino acids, arginine and γ-aminobutyric acid (GABA), and the diamine, putrescine) was also observed. In general, these changes were species-specific and occurred in an elevation dependent manner. Despite an observed increase in Ca at high elevation for all three species, only sugar maple exhibited a decrease in foliar putrescine at this elevation indicating possible remediation from Ca deficiency. At higher elevations of the reference WS3 site, foliar concentrations of Ca and Mg, as well as Ca:Mn ratios were lower, whereas Al, putrescine, spermidine, and GABA were generally higher. Comparison of metabolic data from these three species reinforces the earlier findings that sugar maple is the most sensitive and American beech the least sensitive species to soil Ca limitation. Furthermore, there was an increase in sensitivity with an increase in elevation.
Keywords:American beech   Amino acids   Calcium   Polyamines   Sugar maple   Yellow birch
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号