首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changes in light levels and stream temperatures with loss of eastern hemlock (Tsuga canadensis) at a southern Appalachian stream: Implications for brook trout
Authors:Leigh A Siderhurst  Heather P Griscom  Mark Hudy  Zachary J Bortolot
Institution:1. Department of Biology, James Madison University, Harrisonburg, VA, United States;2. Fish and Aquatic Biology Unit, East USDA Forest Service, United States;3. Department of Integrated Science and Technology, James Madison University, Harrisonburg, VA, United States
Abstract:The exotic invasive insect, hemlock woolly adelgid (Adelges tsugae Annand), is causing mortality in eastern hemlocks (Tsuga canadensis L.] Carr.) throughout the eastern U.S. Because hemlocks produce dense shade, and are being replaced by hardwood species that produce less shade, their loss may increase understory light levels. In the southern Appalachians, increases in light could increase stream temperatures, threatening species such as brook trout (Salvelinus fontinalis). We studied changes in light and stream temperature with eastern hemlock decline at a headwater southern Appalachian brook trout stream. Our results indicate that stream light levels have increased significantly with adelgid infestation. Leaf-on light levels are currently significantly higher (P < 0.02) in plots containing high basal areas of hemlock (mean global site factor (GSF)(SE) = 0.267(0.01)) compared with plots containing no hemlock (mean GSF(SE) = 0.261(0.01)), suggesting that increases in light have occurred with hemlock decline. The Normalized Difference Vegetation Index (NDVI), a remotely sensed metric of vegetation density, decreased with hemlock decline from 2001 to 2008. In 2001, NDVI showed no relationship (R2 = 0.003; F = 0.14; P = 0.71) with hemlock basal area, but by 2008, there was a significant negative relationship (R2 = 0.352; F = 19.55; P < 0.001) between NDVI and hemlock basal area. A gap experiment showed that light levels may increase by up to 64.7% more (mean increase in GSF = 27.5%) as hemlocks fall, creating gaps in the canopy. However, stream temperatures did not increase with hemlock decline during the study period, and we found that ground water inputs have a stronger influence on water temperature than light levels at this site. Linear regression showed a significant negative relationship between water temperature and proximity to ground water sources (R2 = 0.451; F = 13.14; P = 0.002), but no relationship between water temperature and light levels (R2 < 0.02; P > 0.05). In addition, by comparing light levels between plots containing hemlock and those containing only hardwoods, we found that if hemlocks are replaced by hardwoods, light levels under an all-hardwood canopy (mean GSF(SE) = 0.240(0.005)) are unlikely to be higher than they are under the current forest (mean GSF(SE) = 0.254(0.007)). These results suggest that loss of hemlock along southern Appalachian headwater streams could have short-term impacts on light levels, but that long-term changes in light levels, increases in water temperature, and adverse effects on brook trout may be unlikely.
Keywords:Tsuga canadensis  Eastern hemlock mortality  Hemlock woolly adelgid  Light levels  Stream temperature  Southern Appalachians  Brook trout
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号