首页 | 本学科首页   官方微博 | 高级检索  
     

基于粒子群聚类的防火树种分类
引用本文:胡欣欣,王李进. 基于粒子群聚类的防火树种分类[J]. 吉林林学院学报, 2011, 0(2): 224-228
作者姓名:胡欣欣  王李进
作者单位:福建农林大学计算机与信息学院,福建福州350002
基金项目:福建省自然科学基金项目(2009J05043); 福建农林大学青年教师基金项目(2010019)
摘    要:以福建省37种针阔树种的10个防火性能指标为数据来源,运用粒子群聚类算法将树种分成6类.结果表明:分类达到了较理想的效果,总体符合生产实际情况.与蚁群聚类算法比较,粒子群聚类算法应用于防火树种分析能够获取较优的适应值聚类、较大的类间距离和较小的类内距离.粒子群聚类算法便于应用,可为林业科学中相关研究提供一种新手段.

关 键 词:粒子群  k-均值  聚类分析  防火树种

Classification of Fireproof Trees Based on Particle Swarm Optimization Clustering
HU Xin-xin,WANG Li-jin. Classification of Fireproof Trees Based on Particle Swarm Optimization Clustering[J]. , 2011, 0(2): 224-228
Authors:HU Xin-xin  WANG Li-jin
Affiliation:(College of Computer and Information Science,Fujian Agriculture and Forestry University,Fuzhou 350002,China)
Abstract:The particle swarm optimization clustering algorithm was applied to classify fireproof trees,which were 37 species of coniferous and broad-leaf trees with 10 fireproof indexes in Fujian province.The fireproof trees were divided into six types.The result of classification showed it achieved a perfect effect,and accorded with production practice.Comparing with the ant colony clustering,the result showed that better fitness value,the longer distance between clusters,and the shorter distance inside clusters were archived when the particle swarm optimization clustering was applied to analyze the fireproof trees.The algorithm is convenient to be applied,and can propose a new method for the related research on forestry science.
Keywords:particle swarm optimization  k-means  clustering analysis  fireproof tree
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号