Counteracting virulence mechanisms of grain legume pathogens |
| |
Authors: | Richard N. Strange |
| |
Affiliation: | (1) Department of Biology, University College London, Gower Street, London, WC1E 6BT, UK |
| |
Abstract: | Summary Grain legumes, in common with all other plants, are subject to biotic constraints of which pathogens form an important group. They are variable in type, number, space and time and, most insidiously, in genetic constitution. Consequently, resistance in the plant to a given pathogen may be quickly nullified by genetic alteration of the pathogen, particularly where this is conferred by a single resistance gene. The products of such resistance genes usually recognise, directly or indirectly, a component of the pathogen, which is encoded by a corresponding avirulence gene. Thus resistance and avirulence genes are specific and complementary and the arrangement is referred to as a gene-for-gene relationship. It follows that alteration of the avirulence gene of the pathogen to give a product that is no longer recognised by the product of the resistance gene of the plant gives rise to a susceptible reaction. A possible solution to this problem is to pyramid several resistance genes, a procedure now facilitated by the techniques of genetic modification. In other interactions genes that reduce susceptibility rather than confer complete resistance have been found and in some cases the loci (quantitative trait loci) responsible have been mapped to specific regions of particular chromosomes. The mechanisms by which these genes limit the virulence of the pathogen are generally unknown. However, by gaining an understanding of the fundamental properties of a pathogen that are necessary for pathogenicity or virulence it may be possible to counteract them. Candidates for such properties are toxins, enzymes and mechanisms that interfere with constitutive or active defence of the plant. Reciprocally, understanding the properties of the plant that confer susceptibility may allow selection of germplasm that lacks such properties. Among the candidates here are germination stimulants of pathogen propagules and signals that promote the formation of infection structures. |
| |
Keywords: | gene-for-gene pectic enzymes polygalacturonase inhibiting proteins quantitative trait loci toxins virulence factors |
本文献已被 SpringerLink 等数据库收录! |
|