首页 | 本学科首页   官方微博 | 高级检索  
     


Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity
Authors:Daniel Geisseler  William R. Horwath  Kate M. Scow
Affiliation:Department of Land, Air and Water Resources, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
Abstract:Water availability strongly affects soil microbial activity and community composition. In a laboratory incubation we investigated the combined effect of soil moisture potential (−10 kPa, −135 kPa, and <−1500 kPa) and plant residue addition on soil enzyme activities (protease, β-glucosidase, β-glucosaminidase and exocellulase) and phospholipid fatty acid (PLFA) profiles. Soil respiration was positively correlated with soil moisture potential and significantly increased with the addition of residue. In the unamended soil, enzyme activities were little affected by soil moisture potential, nor did they change much over time. The addition of residue, however, significantly increased enzyme activity at each moisture level. Furthermore, all four enzyme activities were considerably higher in the amended dry soil than in amended samples with a higher moisture potential. In contrast, in the amended dry soil, respiration and microbial biomass were reduced compared to the amended samples with a higher moisture potential. The low microbial biomass in the amended dry soil was mainly due to a decrease in Gram-negative bacteria, while the fungal biomass reached similar levels at all water potentials. Therefore, shifts in microbial community composition alone cannot explain the increased enzyme activities in the dry soil. Other factors, such as increased fungal activity, stronger interactions between enzymes and soil particles due to thinner water films, may have contributed to the observed effects. Our results suggest that under dry conditions, potential enzyme activities may be decoupled from microbial biomass and respiration in the presence of substrates.
Keywords:Soil moisture   Extracellular enzyme activity   Residue decomposition   Microbial respiration   Microbial community composition   PLFA
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号