首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Differential sensitivity of Atriplex patula and Chenopodium album to sugar beet herbicides: a possible cause for the upsurge of A. patula in sugar beet fields
Authors:B De Cauwer  A Cardinael  S Claerhout  B Manderyck  D Reheul
Institution:1. Weed Science Unit, Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium;2. IRBAB‐KBIVB, Royal Belgian Institute for Beet Improvement, Tienen, Belgium
Abstract:In the last decade, the prevalence of Atriplex patula as a weed in the Belgian sugar beet area has increased. Possible reasons for its expansion in sugar beet fields, besides a poor implementation of the low‐dose phenmedipham/activator/soil‐acting herbicide (FAR) system, might be low sensitivity or evolved resistance to one or more herbicides used in sugar beet. Dose – response pot bioassays were conducted in the glasshouse to evaluate the effectiveness of five foliar‐applied sugar beet herbicides (metamitron, phenmedipham, desmedipham, ethofumesate and triallate) and three pre‐plant‐incorporated herbicides (metamitron, lenacil, dimethenamid‐P) for controlling five Belgian A. patula populations. Local metamitron‐susceptible and metamitron‐resistant populations of Chenopodium album were used as reference populations. Effective dosages and resistance indices were calculated. DNA sequence analysis of the photosystem II psbA gene was performed on putative resistant A. patula populations. Overall, A. patula exhibited large intraspecific variation in herbicide sensitivity. In general, A. patula populations were less susceptible to phenmedipham, desmedipham, ethofumesate and triallate relative to C. album populations. Two A. patula populations bear the leucine‐218 to valine mutation on the chloroplast psbA gene conferring low level to high level cross‐resistance to the photosystem II inhibitors phenmedipham, desmedipham, metamitron and lenacil. In order to avoid insufficient A. patula control and further spread, seedlings should preferentially be treated with FAR mixtures containing higher‐than‐standard doses of metamitron and phenmedipham/desmedipham and no later than the cotyledon stage.
Keywords:FAR system  metamitron  phenmedipham  herbicide resistance  bioassay  psbA mutation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号