首页 | 本学科首页   官方微博 | 高级检索  
     

双季稻区镉污染稻田水稻改制玉米轮作对镉吸收的影响
引用本文:吴家梅,谢运河,田发祥,官迪,朱坚,陈锦,纪雄辉. 双季稻区镉污染稻田水稻改制玉米轮作对镉吸收的影响[J]. 农业环境科学学报, 2019, 38(3): 502-509
作者姓名:吴家梅  谢运河  田发祥  官迪  朱坚  陈锦  纪雄辉
作者单位:湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125;南方粮油作物协同创新中心, 长沙 410125,湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125,湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125,湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125,湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125,湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125,湖南省农业环境生态研究所, 农业部长江中游平原农业环境重点实验室, 长沙 410125;农田土壤重金属污染防控与修复湖南省重点实验室, 长沙 410125;南方粮油作物协同创新中心, 长沙 410125
基金项目:国家重点研发计划项目(2017YFD0801504);湖南省自然科学基金项目(2017JJ2146)
摘    要:为研究低镉(Cd)污染(Cd为0.35 mg·kg~(-1))稻田改制的农产品安全利用技术,通过双季稻区早-晚稻轮作,玉米-玉米轮作、水稻-玉米轮作和玉米-水稻轮作试验,研究不同轮作制度下土壤有效Cd、作物不同器官Cd含量,Cd富集系数、转移系数和土壤养分的变化。结果表明:不同轮作制度下,水稻根、茎叶和稻米中Cd的平均含量分别为3.66、1.30 mg·kg~(-1)和0.36 mg·kg~(-1);玉米根、茎叶和籽粒中Cd的含量分别为0.50、0.12 mg·kg~(-1)和0.03 mg·kg~(-1);水稻根系、茎叶和籽粒的富集系数平均分别为11.96、4.27和1.19,玉米的分别为1.73、0.50和0.13;水稻的根系向茎叶和茎叶向籽粒转运的转运系数分别为0.36和0.28,玉米的为0.24和0.20;晚稻籽粒Cd含量高于早稻,秋玉米Cd含量高于春玉米;土壤中的碱解氮、有效磷和速效钾不影响作物对Cd的吸收;种植玉米比同季水稻略有增产。研究表明,在Cd轻度污染地区,晚稻改种玉米能保障粮食作物安全,是一种值得推荐的种植制度。

关 键 词:土壤镉污染  水旱轮作  富集  转运
收稿时间:2018-05-29

Effects of rice and corn rotation on cadmium uptake in double-cropping cadmium-polluted paddy rice fields
WU Jia-mei,XIE Yun-he,TIAN Fa-xiang,GUAN Di,ZHU Jian,CHEN Jin and JI Xiong-hui. Effects of rice and corn rotation on cadmium uptake in double-cropping cadmium-polluted paddy rice fields[J]. Journal of Agro-Environment Science( J. Agro-Environ. Sci.), 2019, 38(3): 502-509
Authors:WU Jia-mei  XIE Yun-he  TIAN Fa-xiang  GUAN Di  ZHU Jian  CHEN Jin  JI Xiong-hui
Affiliation:Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China;Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410125, China,Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China,Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China,Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China,Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China,Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China and Institute of Agro-Environment and Ecology, Hunan Province, Key Laboratory of Agro-Environment in Midstream of Yangtze Plain, Ministry of Agriculture, Changsha 410125, China;Key Lab of Prevention, Control and Remediation of Soil Heavy Metal Pollution in Hunan Province, Changsha 410125, China;Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410125, China
Abstract:In this study, we examined the effects of rice and corn rotation on soil effective cadmium (Cd) levels, Cd levels in various parts of rice and corn, and coefficients of accumulation and transfer in lightly Cd-polluted (Cd 0.35 mg·kg-1) double-cropping paddy rice fields. The results showed that the average content of Cd in rice roots, stems and leaves, and grains was 3.66, 1.30 mg·kg-1, and 0.36 mg·kg-1, respectively; the content of Cd in corn roots, stems and leaves, and grains was 0.50, 0.12 mg·kg-1, and 0.03 mg·kg-1, respectively; the average bio-accumulation coefficients corresponding to rice roots, stems and leaves, and grains were 11.96, 4.27, and 1.19, and those in corn were 1.73, 0.50, and 0.13, respectively; the transfer coefficients from rice roots to the stems and leaves and from the stems and leaves to grains were 0.36 and 0.28, whereas those in corn were 0.24 and 0.20, respectively; the content of Cd in late rice grains was higher than that in early rice grains, and the content of Cd in autumn corn grains was higher than that in spring corn grain; the alkali hydrolysable nitrogen, available phosphorus, and rapid-acting potassium in the soil had no effects on Cd uptake by crops; and the planted corn was slightly more productive than rice during the same season. In summary, planting corn instead of later rice replanting may ensure safer crop grains in lightly Cd-polluted double-cropping paddy rice fields. This rotation can be considered a recommendable planting system.
Keywords:soil cadmium pollution  water and drought rotation  bio-accumulation  translocation
本文献已被 CNKI 等数据库收录!
点击此处可从《农业环境科学学报》浏览原始摘要信息
点击此处可从《农业环境科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号